Icariin is a major bioactive compound of Epimedii Herba, a traditional oriental medicine exhibiting anti-cancer, anti-inflammatory and anti-osteoporosis activities. Recently, the estrogenic activities of icariin drew significant attention, but the published scientific data seemed not to be so consistent. To provide fundamental information for the study of the icaritin metabolism, the biotransformation of icariin by the human intestinal bacteria is reported for the first time. Together with human intestinal microflora, the three bacteria Streptococcus sp. MRG-ICA-B, Enterococcus sp. MRG-ICA-E, and Blautia sp. MRG-PMF-1 isolated from human intestine were reacted with icariin under anaerobic conditions. The metabolites including icariside II, icaritin, and desmethylicaritin, but not icariside I, were produced. The MRG-ICA-B and E strains hydrolyzed only the glucose moiety of icariin, and icariside II was the only metabolite. However, the MRG-PMF-1 strain metabolized icariin further to desmethylicaritin via icariside II and icaritin. From the results, along with the icariin metabolism by human microflora, it was evident that most icariin is quickly transformed to icariside II before absorption in the human intestine. We propose the pharmacokinetics of icariin should focus on metabolites such as icariside II, icaritin and desmethylicaritin to explain the discrepancy between the in vitro bioassay and pharmacological effects.
Background: Gliomas are the most common intracranial malignant neoplasms and have high recurrence and mortality rates. Recent literatures have reported that centromere protein N (CENPN) participates in tumor development. However, the clinicopathologic significance and biological functions of CENPN in glioma are still unclear.Methods: Clinicopathologic data and gene expression profiles of glioma cases downloaded from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases were utilized to determine the associations between the expression of CENPN and clinical features of glioma. Kaplan-Meier and ROC curves were plotted for prognostic analysis. Gene set enrichment analysis (GSEA) and single sample gene set enrichment analysis (ssGSEA) were applied to identify immune-related functions and pathways associated with CENPN’ differential expression. In vitro experiments were conducted to investigate the impacts of CENPN on human glioma cells.Results: Elevated CENPN expression was associated with unfavorable clinical variables of glioma patients, which was validated in clinical specimens obtained from our institution by immunohistochemical staining (IHC). The GSEA and ssGSEA results revealed that CENPN expression was strongly correlated with inflammatory activities, immune-related signaling pathways and the infiltration of immune cells. Cell experiments showed that CENPN deficiency impaired cell proliferation, migration and invasion ability and increased glioma apoptosis.Conclusion: CENPN could be a promising therapeutic target for glioma.
BACKGROUND Frequent application of chemical fumigants has contributed to the development of resistance in stored‐product pests. Essential oils provide a novel and environmentally friendly alternative to conventional chemical pesticides. In this work, the fumigant activity of Taxodium ‘zhongshansha’ essential oil (TZEO) and main active components against Sitophilus zeamais were evaluated. In addition, the molecular mechanisms mediating the fumigant activity of limonene were assessed. RESULTS TZEO showed strong fumigant activity against Sitophilus zeamais, with a 50% lethal concentration (LC50) of 22.90 μL L−1 air in 24 h. The main components of TZEO were identified using gas chromatography–mass spectrometry, the main active ingredient (limonene) showed an LC50 of 9.93 μL L−1 air in 24 h which had a serious dose‐time‐effect. The LC50 value of the positive control (aluminum phosphide) was 1.91 μL L−1. In total, 3982 up‐regulated and 3067 down‐regulated genes were sequenced in limonene‐fumigated Sitophilus zeamais, the genes related to metabolic detoxification were significantly enriched. The mortality rate of 7 day‐old Sitophilus zeamais adult mediated with knockdown of SzCYP6MS5 and SzCYP6MS6 raised up to 65.67% and 67.65% after fumigation with limonene in 24 h, respectively. The results showed that SzCYP6MS5 and SzCYP6MS6 are closely involved to the detoxification of limonene. CONCLUSION In this study, candidate genes affected by limonene treatment in Sitophilus zeamais were identified. These findings provided insights into the systemic metabolic response of Sitophilus zeamais to limonene and established a basis for the development of limonene as a botanical pesticide for the control of stored‐product pests. © 2022 Society of Chemical Industry.
Long noncoding RNAs (lncRNAs) are important regulatory factors in multiple biological processes, and several lncRNAs are known to respond to insecticides. However, the lncRNA functions that are associated with terpinen-4-ol resistance in the red flour beetle (Tribolium castaneum) have not yet been identified. In this study, we determined the differentially transcribed lncRNAs between fumigated and control experimental groups. In the six libraries that underwent RNA sequencing, 34,546 transcripts were identified, including 8267 novel lncRNAs, 4155 novel mRNAs, 1151 known lncRNAs, and 20,973 known mRNAs. Among these, we found that the expression of 1858 mRNAs and 1663 lncRNAs was significantly different in the fumigated group compared with the control group. Among the differentially transcribed lncRNAs, 453 were up-regulated and 1210 were down-regulated lncRNAs. In addition, we identified the regulatory function targets of the lncRNAs. Functionally, all lncRNAs and target genes associated with terpinen-4-ol metabolism were enriched in several metabolic pathways, like the ATP-binding cassette transporter, pentose interconversion, and glucuronate interconversion. To the best of our knowledge, this study represents the first global identification of lncRNAs and their potential association with terpinen-4-ol metabolism in the red flour beetle. These results will provide reference information for studies on the resistance to terpinen-4-ol and other essential oil compounds and chemical pesticides, as well as an understanding of other biological processes in T. castaneum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.