Blockade of immune checkpoint pathways by programmed cell death protein 1 (PD-1) antibodies has demonstrated broad clinical efficacy against a variety of malignancies. Sintilimab, a highly selective, fully human monoclonal antibody (mAb), blocks the interaction of PD-1 and its ligands and has demonstrated clinical benefit in various clinical studies. Here, we evaluated the affinity of sintilimab to human PD-1 by surface plasmon resonance and mesoscale discovery and evaluated PD-1 receptor occupancy and anti-tumor efficacy of sintilimab in a humanized NOD/Shi-scid-IL2rgamma (null) (NOG) mouse model. We also assessed the receptor occupancy and immunogenicity of sintilimab from clinical studies in humans (9 patients with advanced solid tumor and 381 patients from 4 clinical studies, respectively). Sintilimab bound to human PD-1 with greater affinity than nivolumab (Opdivo®, MDX-1106) and pembrolizumab (Keytruda®, MK-3475). The high affinity of sintilimab is explained by its distinct structural binding mode to PD-1. The pharmacokinetic behavior of sintilimab did not show any significant differences compared to the other two anti-PD-1 mAbs. In the humanized NOG mouse model, sintilimab showed superior PD-1 occupancy on circulating T cells and a stronger anti-tumor effect against NCI-H292 tumors. The strong anti-tumor response correlated with increased interferon-γ-secreting, tumor-specific CD8+ T cells, but not with CD4+ Tregs in tumor tissue. Pharmacodynamics testing indicated a sustained mean occupancy of ≥95% of PD-1 molecules on circulating T cells in patients following sintilimab infusion, regardless of infusion dose. Sintilimab infusion was associated with 0.52% (2/381 patients) of anti-drug antibodies and 0.26% (1/381 patients) neutralizing antibodies. These data validate sintilimab as a novel, safe, and efficacious anti-PD-1 mAb for cancer immunotherapy.
Anti-programmed cell death-1 (PD-1)/PD-ligand-1 (PD-L1) treatments are effective in a fraction of patients with advanced malignancies. However, the majority of patients do not respond to it. Resistance to cancer immunotherapy can be mediated by additional immune checkpoints. We hypothesized that co-targeting of PD-L1 and lymphocyte-activation gene 3 (LAG-3) could provide an alternative therapeutic approach. Here, we developed IBI323, a dual blockade bispecific antibody targeting PD-L1 and LAG-3.
We assessed the binding affinity, blocking activity, cell bridging effect, and immunomodulation function of IBI323 using in vitro assays. We also evaluated, in two humanized mouse models, anti-tumor effects and antitumor T cell immunity induced by IBI323.
IBI323 bound to PD-L1 and LAG-3 with similar potency as its parental antibodies and blocked the interaction of PD-1/PD-L1, CD80/PD-L1, and LAG-3/MHC-II. Moreover, IBI323 mediated the bridging of PD-L1+ cells and LAG-3+ cells and demonstrated superior immune stimulatory activity compared to each parent antibody in mixed leukocyte reaction. In PD-L1/LAG-3 double knock-in mice bearing human PD-L1 knock-in MC38 tumors, IBI323 showed stronger anti-tumor activity compared to each parental antibody. The better antitumor response correlated with increased tumor-specific CD8+ and CD4+ T cells. IBI323 also induced stronger anti-tumor effect against established A375 tumors compared with combination in mice reconstituted with human immune cells.
Collectively, these data demonstrated that IBI323 preserved the blockade activities of parental antibodies while processing a novel cell bridging function. Based on the encouraging preclinical results, IBI323 has significant value in further clinical development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.