In this article, we propose an implicit pseudospectral scheme for nonlinear time fractional reaction–diffusion equations with Neumann boundary conditions, which is based upon Gauss–Lobatto–Legendre–Birkhoff pseudospectral method in space and finite difference method in time. A priori estimate of numerical solution is given firstly. Then the existence of numerical solution is proved by Brouwer fixed point theorem and the uniqueness is obtained. It is proved rigorously that the fully discrete scheme is unconditionally stable and convergent. Furthermore, we develop a modified scheme by adding correction terms for the problem with nonsmooth solutions. Numerical examples are given to verify the theoretical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.