Embryonic mesenchymal stem cells (eMSCs) were first derived from human embryonic stem cells (hESCs) overexpressing green fluorescence protein (GFP). They expressed CD29, CD44, CD73, CD105, CD166 and nestin, but not CD34, CD45, CD106 SSEA-4 or Oct3/4. Twenty million eMSCs in 1 mL of phosphate-buffered saline (PBS) were injected into the femoral veins of spontaneously hypertensive rats after transient middle cerebral artery occlusion. The migration and differentiation of the eMSCs in the ischemic brain were analyzed. The results revealed that eMSCs migrated to the infarction region and differentiated into neurons, which were positive for b-tubulin III, microtubule-associated protein 2 (MAP2), HuC, neurofilament and human nuclear antibody, and to vascular endothelial cells, which were positive for von Willebrand factor (vWF). The transplanted cells survived in the infarction region for at least 4 weeks. Adhesive removal function significantly improved in the first week after cell transplantation, and rotarod motor function significantly improved starting from the second week. The infarction volume in the eMSC group was significantly smaller than that in the PBS control group at 4 weeks after infusion. The results of this study show that when administered intravenously, eMSCs differentiated into neuronal and endothelial cells, reduced the infarction volume, and improved behavioral functional outcome significantly in transient focal cerebral ischemia.
Although various posterior insertion angles for screw insertion have been proposed for C1 lateral mass, substantial conclusions have not been reached regarding ideal angles and average length of the screw yet. We aimed to re-consider the morphometry and the ideal trajections of the C1 screw. Morphometric analysis was performed on 40 Turkish dried atlas vertebrae obtained from the Department of Anatomy at the Medical School of Ankara University. The quantitative anatomy of the screw entry zone, trajectories, and the ideal lengths of the screws were calculated to evaluate the feasibility of posterior screw fixation of the lateral mass of the atlas. The entry point into the lateral mass of the atlas is the intersection of the posterior arch and the C1 lateral mass. The optimum medial angle is 13.5 +/- 1.9 degrees and maximal angle of medialization is 29.4 +/- 3.0 degrees . The ideal cephalic angle is 15.2 +/- 2.6 degrees , and the maximum cephalic angle is 29.6 +/- 2.6 degrees . The optimum screw length was found to be 19.59 +/- 2.20 mm. With more than 30 degrees of medial trajections and cephalic trajections the screw penetrates into the spinal canal and atlantooccipital joint, respectively. Strikingly, in 52% of our specimens, the height of the inferior articular process was under 3.5 mm, and in 70% was under 4 mm, which increases the importance of the preparation of the screw entry site. For accommodation of screws of 3.5-mm in diameter, the starting point should be taken as the insertion of the posterior arch at the superior end of the inferior articular process with a cephalic trajection. This study may aid many surgeons in their attempts to place C1 lateral mass screws.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.