Background and objectives
Diabetic retinopathy (DR) is the leading cause of blindness worldwide, and therefore its early detection is important in order to reduce disease-related eye injuries. DR is diagnosed by inspecting fundus images. Since microaneurysms (MA) are one of the main symptoms of the disease, distinguishing this complication within the fundus images facilitates early DR detection. In this paper, an automatic analysis of retinal images using convolutional neural network (CNN) is presented.
Methods
Our method incorporates a novel technique utilizing a two-stage process with two online datasets which results in accurate detection while solving the imbalance data problem and decreasing training time in comparison with previous studies. We have implemented our proposed CNNs using the Keras library.
Results
In order to evaluate our proposed method, an experiment was conducted on two standard publicly available datasets, i.e., Retinopathy Online Challenge dataset and E-Ophtha-MA dataset. Our results demonstrated a promising sensitivity value of about 0.8 for an average of >6 false positives per image, which is competitive with state of the art approaches.
Conclusion
Our method indicates significant improvement in MA-detection using retinal fundus images for monitoring diabetic retinopathy.
The results demonstrate that the proposed algorithm is highly accurate and able to detect and repair the hair pixels with few errors. In addition, the segmentation veracity of the skin lesion is effectively improved after our proposed hair removal algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.