Hexamethylenetetramine dinitrate (HDN) is a rather weak explosive but is used as a precursor for the synthesis of RDX, one of the most important secondary nitramine explosives. HDN has limited application because of its hygroscopic character. This paper reports on the synthesis and characterization of HDN in high yield and purity by the reaction of hexamine with nitric acid at temperatures below 15 °C. It was characterized by FTIR and 1H NMR spectroscopy, Scanning Electron Microscopy (SEM) and Liquid Chromatography/Mass Spectrometry (LC/MS) measurements. The thermal characteristics of HDN were determined by DSC and TG/DTA. The DSC curve of HDN shows an endothermic peak at 170.5 °C corresponding to the melting point of HDN, followed by two exothermic peaks at 174.0 °C and 200.5 °C due to the decomposition. The differences in the thermal behavior of HDN samples, which were thermally aged at 50 °C, 100 °C, and 150 °C in a nitrogen atmosphere were examined. Additionally, some quantum chemical properties of the nitration of hexamethylenetetramine were calculated.
Passive cell separation methods have attracted great attention due to their superiority over the other methods stemming from their easy fabrication, precise manipulation, cost-effectiveness, sensitivity, and simplicity. The fluid inertia in these methods is the main factor that is affected by the channel design; thus, the channel design parameters should be chosen accordingly. Even though all channel design parameters are well addressed in inertial microfluidics, the curvature angle of the channel has not yet been extensively studied. In this study, three different curvilinear microchannels with curvature angles of 180°, 210°, and 270° were designed, keeping all other remaining parameters the same. The focusing ability of the fluorescent polystyrene microparticles with diameters of 1.1, 3.3, and 9.9 μm was investigated both experimentally and numerically to understand focusing efficiency affected by the curvature angle of the microchannel. The first set of experiments was to determine the effect of the channel curvature and indicated the favorable design as channel C, which showed focusing qualities of 0.85 and 0.92 for 9.9 μm particles at volumetric concentrations of 2% and 5%, respectively. The remaining set of experiments and CFD simulations were conducted to observe the interaction of 3.3 and 9.9 μm particles and reveal the distortion of the focusing line and particulate phase contours for 9.9 μm particles at the flow rates between 0.3 and 0.7 ml/min, which was further confirmed by enriched mixtures containing 1.1, 3.3, and 9.9 μm particles. The study showed that mixtures comprising low diameter particles could not satisfy the focusing criteria, which emphasized the importance of an appropriate particle size and concentration for a single focus line. On the other hand, it was shown that geometric features of the microchannel such as the hydraulic diameter and the curvature angle together with the particle size determine the focusing quality both experimentally and numerically. To sum up, the increment of the channel curvature angle is a determining factor for particle focusing, and a single focusing line was observed on the particles maintaining the focusing criteria even in many particle conditions. While the focusing quality of the particles was reduced by multi-particle interactions, they were proven to be separable achieving the appropriate concentration ratio.
Crosslinked poly(diallyldimethylammonium chloride) (DADMAC) was demonstrated as selective conjugate for near quantitative adsorption of dinitramide anions from water in a wide pH range (1-10) and efficient replacement takes place even at 1 : 1 DADMAC/dinitramide molar ratio with short contact time and low concentration. Adsorption was determined to be highly selective over nitrate and sulfate ions. Colorimetric determination of potassium dini-tramide based on UV absorption at 284 nm revealed nearly 90 % exchange of chloride counter ions with dinitramide ions under optimum conditions. The effect of gel amount, pH and dinitramide concentration was analyzed. The structural and thermal characteristics of the gel were investigated by FTIR, SEM, DSC, and TGA. In addition, the regeneration and reuse properties of crosslinked polyDADMAC were also assessed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.