Kaposi's sarcoma-associated herpesvirus encodes a chemokine called vMIP-II. This protein displayed a broader spectrum of receptor activities than any mammalian chemokine as it bound with high affinity to a number of both CC and CXC chemokine receptors. Binding of vMIP-II, however, was not associated with the normal, rapid mobilization of calcium from intracellular stores; instead, it blocked calcium mobilization induced by endogenous chemokines. In freshly isolated human monocytes the virally encoded vMIP-II acted as a potent and efficient antagonist of chemotaxis induced by chemokines. Because vMIP-II could inhibit cell entry of human immunodeficiency virus (HIV) mediated through CCR3 and CCR5 as well as CXCR4, this protein may serve as a lead for development of broad-spectrum anti-HIV agents.
The MC148 CC chemokine from the human poxvirus molluscum contagiosum (MCV) was probed in parallel with viral macrophage inflammatory protein (vMIP)-II encoded by human herpesvirus 8 (HHV8) in 16 classified human chemokine receptors. In competition binding using radiolabeled endogenous chemokines as well as radiolabeled MC148, MC148 bound with high affinity only to CCR8. In calcium mobilization assays, MC148 had no effect on its own on any of the chemokine receptors, but in a dose-dependent manner blocked the stimulatory effect of the endogenous I-309 chemokine on CCR8 without affecting chemokine-induced signaling of any other receptor. In contrast, vMIP-II acted as an antagonist on 10 of the 16 chemokine receptors, covering all four classes: XCR, CCR, CXCR, and CX3CR. In chemotaxis assays, MC148 specifically blocked the I-309–induced response but, for example, not stromal cell–derived factor 1α, monocyte chemoattractant protein 1, or interleukin 8–induced chemotaxis. We thus concluded that the two viruses choose two different ways to block the chemokine system: HHV8 encodes the broad-spectrum chemokine antagonist vMIP-II, whereas MCV encodes a highly selective CCR8 antagonist, MC148, conceivably to interfere with monocyte invasion and dendritic cell function. Because of its pharmacological selectivity, the MC148 protein could be a useful tool in the delineation of the role played by CCR8 and its endogenous ligand, I-309.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.