IMPORTANCE Mammography screening currently relies on subjective human interpretation. Artificial intelligence (AI) advances could be used to increase mammography screening accuracy by reducing missed cancers and false positives. OBJECTIVE To evaluate whether AI can overcome human mammography interpretation limitations with a rigorous, unbiased evaluation of machine learning algorithms. DESIGN, SETTING, AND PARTICIPANTS In this diagnostic accuracy study conducted between September 2016 and November 2017, an international, crowdsourced challenge was hosted to foster AI algorithm development focused on interpreting screening mammography. More than 1100 participants comprising 126 teams from 44 countries participated. Analysis began November 18, 2016. MAIN OUTCOMES AND MEASUREMENTS Algorithms used images alone (challenge 1) or combined images, previous examinations (if available), and clinical and demographic risk factor data (challenge 2) and output a score that translated to cancer yes/no within 12 months. Algorithm accuracy for breast cancer detection was evaluated using area under the curve and algorithm specificity compared with radiologists' specificity with radiologists' sensitivity set at 85.9% (United States) and 83.9% (Sweden). An ensemble method aggregating top-performing AI algorithms and radiologists' recall assessment was developed and evaluated. RESULTS Overall, 144 231 screening mammograms from 85 580 US women (952 cancer positive Յ12 months from screening) were used for algorithm training and validation. A second independent validation cohort included 166 578 examinations from 68 008 Swedish women (780 cancer positive). The top-performing algorithm achieved an area under the curve of 0.858 (United States) and 0.903 (Sweden) and 66.2% (United States) and 81.2% (Sweden) specificity at the radiologists' sensitivity, lower than community-practice radiologists' specificity of 90.5% (United States) and 98.5% (Sweden). Combining top-performing algorithms and US radiologist assessments resulted in a higher area under the curve of 0.942 and achieved a significantly improved specificity (92.0%) at the same sensitivity. CONCLUSIONS AND RELEVANCE While no single AI algorithm outperformed radiologists, an ensemble of AI algorithms combined with radiologist assessment in a single-reader screening environment improved overall accuracy. This study underscores the potential of using machine (continued)
Image decolorization is a fundamental problem for many real-world applications, including monochrome printing and photograph rendering. In this paper, we propose a new color-to-gray conversion method that is based on a region-based saliency model. First, we construct a parametric color-to-gray mapping function based on global color information as well as local contrast. Second, we propose a region-based saliency model that computes visual contrast among pixel regions. Third, we minimize the salience difference between the original color image and the output grayscale image in order to preserve contrast discrimination. To evaluate the performance of the proposed method in preserving contrast in complex scenarios, we have constructed a new decolorization data set with 22 images, each of which contains abundant colors and patterns. Extensive experimental evaluations on the existing and the new data sets show that the proposed method outperforms the state-of-the-art methods quantitatively and qualitatively.
Detailed 3D visual models of indoor spaces, from walls and floors to objects and their configurations, can provide extensive knowledge about the environments as well as rich contextual information of people living therein. Vision-based 3D modeling has only seen limited success in applications, as it faces many technical challenges that only a few experts understand, let alone solve. In this work we utilize (Kinect style) consumer depth cameras to enable non-expert users to scan their personal spaces into 3D models. We build a prototype mobile system for 3D modeling that runs in real-time on a laptop, assisting and interacting with the user on-thefly. Color and depth are jointly used to achieve robust 3D registration. The system offers online feedback and hints, tolerates human errors and alignment failures, and helps to obtain complete scene coverage. We show that our prototype system can both scan large environments (50 meters across) and at the same time preserve fine details (centimeter accuracy). The capability of detailed 3D modeling leads to many promising applications such as accurate 3D localization, measuring dimensions, and interactive visualization.
Low-rank approximation of image collections (e.g., via PCA) is a popular tool in many areas of computer vision. Yet, surprisingly little is known justifying the observation that images of an object or scene tend to be low dimensional, beyond the special case of Lambertian scenes. This paper considers the question of how many basis images are needed to span the space of images of a scene under realworld lighting and viewing conditions, allowing for general BRDFs. We establish new theoretical upper bounds on the number of basis images necessary to represent a wide variety of scenes under very general conditions, and perform empirical studies to justify the assumptions. We then demonstrate a number of novel applications of linear models for scene appearance for Internet photo collections. These applications include, image reconstruction, occluder-removal, and expanding field of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.