Rechargeable sodium batteries are a promising technology for low‐cost energy storage. However, the undesirable drawbacks originating from the use of glass fiber membrane separators have long been overlooked. A versatile grafting–filtering strategy was developed to controllably tune commercial polyolefin separators for sodium batteries. The as‐developed Janus separators contain a single–ion‐conducting polymer‐grafted side and a functional low‐dimensional material coated side. When employed in room‐temperature sodium–sulfur batteries, the poly(1‐[3‐(methacryloyloxy)propylsulfonyl]‐1‐(trifluoromethanesulfonyl)imide sodium)‐grafted side effectively enhances the electrolyte wettability, and inhibits polysulfide diffusion and sodium dendrite growth. Moreover, a titanium‐deficient nitrogen‐containing MXene‐coated side electrocatalytically improved the polysulfide conversion kinetics. The as‐developed batteries demonstrate high capacity and extended cycling life with lean electrolyte loading.
Some living organisms such as the octopus have fantastic abilities to simultaneously swim away and alter body color/morphology for disguise and self‐protection, especially when there is a threat perception. However, it is still quite challenging to construct artificial soft actuators with octopus‐like synergistic shape/color change and directional locomotion behaviors, but such systems could enhance the functions of soft robotics dramatically. Herein, we proposed to utilize unique hydrophobic carbon dots (CDs) with rotatable surficial groups to construct the aggregation‐induced emission (AIE) active glycol CDs polymer gel, which could be further employed to be interfacially bonded to an elastomer to produce anisotropic bilayer soft actuator. When putting the actuator on a water surface, glycol spontaneously diffused out from the gel layer to allow water intake, resulting in a color change from a blue dispersion fluorescence to red AIE and a shape deformation, as well as a large surface tension gradient that can promote its autonomous locomotion. Based on these findings, artificial soft swimming robots with octopus‐like synergistic shape/color change and directional swimming motion were demonstrated. This study provides an elegant strategy to develop advanced multi‐functional bio‐inspired intelligent soft robotics.
PurposeTo evaluate difference in therapeutic outcomes between deep anterior lamellar keratoplasty (DALK) and penetrating keratoplasty (PKP) for the clinical treatment of keratoconus.MethodsA comprehensive search was conducted in Pubmed, EMBASE, Cochrane Library, and Web of science. Eligible studies should include at least one of the following factors: best corrected visual acuity (BCVA), postoperative spherical equivalent (SE), postoperative astigmatism and endothelial cell count (ECC), central corneal thickness (CCT), graft rejection and graft failure, of which BCVA, graft rejection and graft failure were used as the primary outcome measures, and postoperative SE, astigmatism, CCT and ECC as the secondary outcome measures. Given the lack of randomized clinical trials (RCTs), cohort studies and prospective studies were considered eligible.ResultsSixteen clinical trials involving 6625 eyes were included in this review, including 1185 eyes in DALK group, and 5440 eyes in PKP group. The outcomes were analyzed using Cochrane Review Manager (RevMan) version 5.0 software. The postoperative BCVA in DALK group was significantly better than that in PKP group (OR = 0.48; 95%CI 0.39 to 0.60; p<0.001). There were fewer cases of graft rejection in DALK group than those in PKP group (OR = 0.28; 95%CI 0.15 to 0.50; p<0.001). Nevertheless the rate of graft failure was similar between DALK and PKP groups (OR = 1.05; 95%CI 0.81 to 1.36; p = 0.73). There were no significant differences in the secondary outcomes of SE (p = 0.70), astigmatism (p = 0.14) and CCT (p = 0.58) between DALK and PKP groups. And ECC in DALK group was significantly higher than PKP group (p<0.001). The postoperative complications, high intraocular pressure (high-IOP) and cataract were analyzed, fewer cases of complications occurred in DALK group than those in PKP group (high-IOP, OR 0.22, 95% CI 0.11–0.44, P<0.001) (cataract, OR 0.22; 95% CI 0.08–0.61, P = 0.004). And no cases of expulsive hemorrhage and endophthalmitis were reported.ConclusionThe visual outcomes for DALK were not equivalent to PKP. The rate of graft failure was similar between DALK and PKP. Fewer postoperative complications occurred in DALK group, indicating that compared with PKP, DALK has lower efficacy but higher safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.