Herein, a twisty C‐TiO2/PCN (CNT) Step‐scheme (S‐scheme) heterojunction is fabricated and applied to degrade ciprofloxacin (CIP) with the assistance of ultrasonic vibration and visible light irradiation. The nitrogen‐rich twisty polymeric carbon nitride (PCN) can not only induce a non‐centrosymmetric structure with enhanced polarity for a better piezoelectric effect but also provide abundant lone pair electrons to promote n→π* transition during photocatalysis. Its hybridization with C‐TiO2 particles can construct S‐scheme heterojunction in CNT. During the piezo‐photocatalysis, the strain‐induced polarization electric field in the heterojunction can regulate the electron migration between the two components, resulting in a more effective CIP degradation. With the synergistic effect of ultrasonic vibration and visible light irradiation, the reaction rate constant of CIP degradation by CNT increases to 0.0517 min−1, which is 1.86 times that of photocatalysis and 6.46 times that of ultrasound. This system exhibits a stable CIP decomposition efficiency under the interference of various environmental factors. In addition, the in‐depth investigation found that three pathways and 12 major intermediates with reduced toxicity are produced after the reaction. Hopefully, the construction of this twisty CNT S‐scheme heterojunction with enhanced piezo‐photocatalytic effect offers inspiration for the design of environmentally functional materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.