Background: Traditional scoring systems for patients' outcome prediction in intensive care units such as Oxygenation Saturation Index (OSI) and Oxygenation Index (OI) may not reliably predict the clinical prognosis of patients with acute respiratory distress syndrome (ARDS). Thus, none of them have been widely accepted for mortality prediction in ARDS. This study aimed to develop and validate a mortality prediction method for patients with ARDS based on machine learning using the Medical Information Mart for Intensive Care (MIMIC-III) and Telehealth Intensive Care Unit (eICU) Collaborative Research Database (eICU-CRD) databases.Methods: Patients with ARDS were selected based on the Berlin definition in MIMIC-III and eICU-CRD databases. The APPS score (using age, PaO 2 /FiO 2 , and plateau pressure), Simplified Acute Physiology Score II (SAPS-II), Sepsis-related Organ Failure Assessment (SOFA), OSI, and OI were calculated. With MIMIC-III data, a mortality prediction model was built based on the random forest (RF) algorithm, and the performance was compared to those of existing scoring systems based on logistic regression. The performance of the proposed RF method was also validated with the combined MIMIC-III and eICU-CRD data. The performance of mortality prediction was evaluated by using the area under the receiver operating characteristics curve (AUROC) and performing calibration using the Hosmer-Lemeshow test.Results: With the MIMIC-III dataset (308 patients, for comparisons with the existing scoring systems), the RF model predicted the in-hospital mortality, 30-day mortality, and 1-year mortality with an AUROC of 0.891, 0.883, and 0.892, respectively, which were significantly higher than those of the SAPS-II, APPS, OSI, and OI (all P<0.001). In the multi-source validation (the combined dataset of 2,235 patients in MIMIC-III and 331 patients in eICU-CRD), the RF model achieved an AUROC of 0.905 and 0.736 for predicting inhospital mortality for the MIMIC-III and eICU-CRD datasets, respectively. The calibration plots suggested good fits for our RF model and these scoring systems for predicting mortality. The platelet count and lactate level were the strongest predictive variables for predicting in-hospital mortality.Conclusions: Compared to the existing scoring systems, machine learning significantly improved performance for predicting ARDS mortality. Validation with multi-source datasets showed a relatively robust generalisation ability of our prediction model.
Background: This study aimed to develop and validate a model for mortality risk stratification of intensive care unit (ICU) patients with acute kidney injury (AKI) using the machine learning technique.Methods: Eligible data were extracted from the Medical Information Mart for Intensive Care (MIMIC-III) database. Calibration, discrimination, and risk classification for mortality prediction were evaluated using conventional scoring systems and the new algorithm. A 10-fold cross-validation was performed. The predictive models were externally validated using the eICU database and also patients treated at the Second People's Hospital of Shenzhen between January 2015 to October 2018.Results: For the new model, the areas under the receiver operating characteristic curves (AUROCs) for mortality during hospitalization and at 28 and 90 days after discharge were 0.91, 0.87, and 0.87, respectively, which were higher than for the Simplified Acute Physiology Score (SAPS II) and Sequential Organ Failure Assessment (SOFA). For external validation, the AUROC was 0.82 for in-hospital mortality, higher than SOFA, SAPS II, and Acute Physiology and Chronic Health Evaluation (APACHE) IV in the eICU database, but for the 28-and 90-day mortality, the new model had AUROCs (0.79 and 0.80, respectively) similar to that of SAPS II in the SZ2 database. The reclassification indexes were superior for the new model compared with the conventional scoring systems. Conclusions:The new risk stratification model shows high performance in predicting mortality in ICU patients with AKI.
Monitoring of the coagulation function has applications in many clinical settings. Routine coagulation assays in the clinic are sample-consuming and slow in turnaround. Microfluidics provides the opportunity to develop coagulation assays that are applicable in point-of-care settings, but reported works required bulky sample pumping units or costly data acquisition instruments. In this work, we developed a microfluidic coagulation assay with a simple setup and easy operation. The device continuously generated droplets of blood sample and buffer mixture and reported the temporal development of blood viscosity during coagulation based on the color appearance of the resultant droplets. We characterized the relationship between blood viscosity and color appearance of the droplets and performed experiments to validate the assay results. In addition, we developed a prototype analyzer equipped with simple fluid pumping and economical imaging module and obtained similar assay measurements. This assay showed great potential to be developed into a point-of-care coagulation test with practical impact.
BackgroundIt is a critical challenge to diagnose leptomeningeal metastasis (LM), given its technical difficulty and the lack of typical symptoms. The existing gold standard of diagnosing LM is to use positive cerebrospinal fluid (CSF) cytology, which consumes significantly more time to classify cells under a microscope.ObjectiveThis study aims to establish a deep learning model to classify cancer cells in CSF, thus facilitating doctors to achieve an accurate and fast diagnosis of LM in an early stage.MethodThe cerebrospinal fluid laboratory of Xijing Hospital provides 53,255 cells from 90 LM patients in the research. We used two deep convolutional neural networks (CNN) models to classify cells in the CSF. A five-way cell classification model (CNN1) consists of lymphocytes, monocytes, neutrophils, erythrocytes, and cancer cells. A four-way cancer cell classification model (CNN2) consists of lung cancer cells, gastric cancer cells, breast cancer cells, and pancreatic cancer cells. Here, the CNN models were constructed by Resnet-inception-V2. We evaluated the performance of the proposed models on two external datasets and compared them with the results from 42 doctors of various levels of experience in the human-machine tests. Furthermore, we develop a computer-aided diagnosis (CAD) software to generate cytology diagnosis reports in the research rapidly.ResultsWith respect to the validation set, the mean average precision (mAP) of CNN1 is over 95% and that of CNN2 is close to 80%. Hence, the proposed deep learning model effectively classifies cells in CSF to facilitate the screening of cancer cells. In the human-machine tests, the accuracy of CNN1 is similar to the results from experts, with higher accuracy than doctors in other levels. Moreover, the overall accuracy of CNN2 is 10% higher than that of experts, with a time consumption of only one-third of that consumed by an expert. Using the CAD software saves 90% working time of cytologists.ConclusionA deep learning method has been developed to assist the LM diagnosis with high accuracy and low time consumption effectively. Thanks to labeled data and step-by-step training, our proposed method can successfully classify cancer cells in the CSF to assist LM diagnosis early. In addition, this unique research can predict cancer’s primary source of LM, which relies on cytomorphologic features without immunohistochemistry. Our results show that deep learning can be widely used in medical images to classify cerebrospinal fluid cells. For complex cancer classification tasks, the accuracy of the proposed method is significantly higher than that of specialist doctors, and its performance is better than that of junior doctors and interns. The application of CNNs and CAD software may ultimately aid in expediting the diagnosis and overcoming the shortage of experienced cytologists, thereby facilitating earlier treatment and improving the prognosis of LM.
BACKGROUND The novel coronavirus disease 2019 (COVID-19) pandemic is a global threat caused by the severe acute respiratory syndrome coronavirus-2. AIM To develop and validate a risk stratification tool for the early prediction of intensive care unit (ICU) admission among COVID-19 patients at hospital admission. METHODS The training cohort included COVID-19 patients admitted to the Wuhan Third Hospital. We selected 13 of 65 baseline laboratory results to assess ICU admission risk, which were used to develop a risk prediction model with the random forest (RF) algorithm. A nomogram for the logistic regression model was built based on six selected variables. The predicted models were carefully calibrated, and the predictive performance was evaluated and compared with two previously published models. RESULTS There were 681 and 296 patients in the training and validation cohorts, respectively. The patients in the training cohort were older than those in the validation cohort (median age: 63.0 vs 49.0 years, P < 0.001), and the percentages of male gender were similar (49.6% vs 49.3%, P = 0.958). The top predictors selected in the RF model were neutrophil-to-lymphocyte ratio, age, lactate dehydrogenase, C-reactive protein, creatinine, D-dimer, albumin, procalcitonin, glucose, platelet, total bilirubin, lactate and creatine kinase. The accuracy, sensitivity and specificity for the RF model were 91%, 88% and 93%, respectively, higher than those for the logistic regression model. The area under the receiver operating characteristic curve of our model was much better than those of two other published methods (0.90 vs 0.82 and 0.75). Model A underestimated risk of ICU admission in patients with a predicted risk less than 30%, whereas the RF risk score demonstrated excellent ability to categorize patients into different risk strata. Our predictive model provided a larger standardized net benefit across the major high-risk range compared with model A. CONCLUSION Our model can identify ICU admission risk in COVID-19 patients at admission, who can then receive prompt care, thus improving medical resource allocation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.