In response to growing consensus among scientists and governments to act fast to avoid dangerous impacts of climate change, many industries have started to prepare for a carbon-constrained world. However, this response is far from being uniform. Often action is predicated on economic, technological, organizational and institutional drivers and barriers, which vary between countries and across industrial sectors. In order to understand the effectiveness of industry response, it is therefore important to analyse corporate response across different sectors in different countries.Focusing on the nine most energy-intensive and greenhouse gas (GHG) emitting industrial sectors, this paper compares corporate responses to climate change in Pakistan and the UK. By analysing the divergence of strategies adopted by industries across different sectors in two countries, the paper examines the key factors influencing corporate adoption and implementation of GHG reduction and energyefficiency strategies in Pakistan and the UK.
Biofuels are being promoted as a low-carbon alternative to fossil fuels as they could help to reduce greenhouse gas (GHG) emissions and the related climate change impact from transport. However, there are also concerns that their wider deployment could lead to unintended environmental consequences. Numerous life cycle assessment (LCA) studies have considered the climate change and other environmental impacts of biofuels. However, their findings are often conflicting, with a wide variation in the estimates. Thus, the aim of this paper is to review and analyse the latest available evidence to provide a greater clarity and understanding of the environmental impacts of different liquid biofuels. It is evident from the review that the outcomes of LCA studies are highly situational and dependent on many factors, including the type of feedstock, production routes, data variations and methodological choices. Despite this, the existing evidence suggests that, if no land-use change (LUC) is involved, first-generation biofuels can—on average—have lower GHG emissions than fossil fuels, but the reductions for most feedstocks are insufficient to meet the GHG savings required by the EU Renewable Energy Directive (RED). However, second-generation biofuels have, in general, a greater potential to reduce the emissions, provided there is no LUC. Third-generation biofuels do not represent a feasible option at present state of development as their GHG emissions are higher than those from fossil fuels. As also discussed in the paper, several studies show that reductions in GHG emissions from biofuels are achieved at the expense of other impacts, such as acidification, eutrophication, water footprint and biodiversity loss. The paper also investigates the key methodological aspects and sources of uncertainty in the LCA of biofuels and provides recommendations to address these issues.
Pressurised metered-dose inhalers are a method of choice for delivering drugs into lungs for the treatment of asthma and chronic obstructive pulmonary disease across the globe. HFC-134a and HFC-227ea propellants, which are currently used in these inhalers, have significant global warming potentials. To reduce the climate change impact of inhalers, several options are available to the industry, including alternative devices, such as dry powder inhalers and nebulisers. In addition, the manufacturers can reduce the propellant quantity per dose or use a different propellant with a lower global warming potential, such as HFC-152a. This study evaluates the life cycle environmental impacts of different types of inhaler and investigates possible scenarios to reduce their impacts. The environmental impacts are estimated through life cycle assessment, following the ReCiPe impact assessment method. The results suggest that HFC-152a inhaler has the lowest impacts for ten out of 14 categories considered, while the dry powder inhaler is the worst option for eight impacts; however, it has the lowest climate change and ozone depletion impacts. Considering the annual use of pressurised metered-dose and dry powder inhalers in the UK, they generate 1.34 Mt CO 2 eq., largely due to HFC-134a inhalers. This represents 4.3% of greenhouse gas emissions of the NHS (National Health Service). Replacing HFC-134a with HFC-152a would reduce the climate change and ozone depletion impacts of inhalers in the UK by 90%-92%. Most other environmental impacts would also decrease significantly (28%-82%). Switching from pressurised metered-dose inhalers to dry powder inhalers would lead to an even higher reduction in the climate change impact (96%). However, several other impacts would increase significantly, including human toxicity, marine eutrophication and fossil depletion. Since changing propellants or replacing pressurised metered-dose inhalers with dry powder inhalers requires further research and development, pharmaceutical companies should continue to work on minimising propellant usage in inhalers and on achieving higher rates of recycling of current inhalers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.