Solar cells may possess defects during the manufacturing process in photovoltaic (PV) industries. To precisely evaluate the effectiveness of solar PV modules, manufacturing defects are required to be identified. Conventional defect inspection in industries mainly depends on manual defect inspection by highly skilled inspectors, which may still give inconsistent, subjective identification results. In order to automatize the visual defect inspection process, an automatic cell segmentation technique and a convolutional neural network (CNN)-based defect detection system with pseudo-colorization of defects is designed in this paper. High-resolution Electroluminescence (EL) images of single-crystalline silicon (sc-Si) solar PV modules are used in our study for the detection of defects and their quality inspection. Firstly, an automatic cell segmentation methodology is developed to extract cells from an EL image. Secondly, defect detection can be actualized by CNN-based defect detector and can be visualized with pseudo-colors. We used contour tracing to accurately localize the panel region and a probabilistic Hough transform to identify gridlines and busbars on the extracted panel region for cell segmentation. A cell-based defect identification system was developed using state-of-the-art deep learning in CNNs. The detected defects are imposed with pseudo-colors for enhancing defect visualization using K-means clustering. Our automatic cell segmentation methodology can segment cells from an EL image in about 2.71 s. The average segmentation errors along the x-direction and y-direction are only 1.6 pixels and 1.4 pixels, respectively. The defect detection approach on segmented cells achieves 99.8% accuracy. Along with defect detection, the defect regions on a cell are furnished with pseudo-colors to enhance the visualization.
While deep convolutional neural networks (CNNs) have recently made large advances in AI, the need of large datasets for deep CNN learning is still a barrier to many industrial applications where only limited data samples can be offered for system developments due to confidential issues. We thus propose an approach of multi-scale image augmentation and classification for training deep CNNs from a small dataset for surface defect detection on cylindrical lithium-ion batteries. In the proposed Lithium-ion battery Surface Defect Detection (LSDD) system, an augmented dataset of multi-scale patch samples generated from a small number of lithium-ion battery images is used in the learning process of a two-stage classification scheme that aims to differentiate defect image patches of lithium-ion batteries in the first stage and to identify specific defect types in the second stage. The LSDD approach is an efficient prototyping method of defect detection from limited training images for quick system evaluation and deployment. The experiments show that, based on only 26 source images, the proposed LSDD (i) constructs two augmented multi-scale datasets of 19,309 and 6889 image patches for training and test, respectively, (ii) achieves 93.67% accuracy for discriminating defect image patches in the first stage, and (iii) reaches 90.78% mean precision rate and 93.89% mean recall rate for defect type identification in the second stage. Our two-stage classification scheme has higher defect detection sensitivity than an intuitive one-stage classification scheme by 0.69%, and outperforms the one-stage scheme in identifying specific defect types. For comparing with YOLOv3 detector, less defect misdetections are observed in our approach as well.
Computer imaging of electroluminescence (EL) has been successfully applied to solar cell inspection in recent years, as EL image intensities reflect the efficiency levels and/or defects in sc-Si and mc-Si solar cells. In this paper, we propose a novel computational scheme for pseudo colorization of EL images to highlight defect regions in solar cells for human inspection. Specifically, given a template EL image and pseudo color labels on its defect regions, we impose the pseudo colors to other grayscale EL images, with respect to different defect types and image structures, by template feature clustering and pseudo color transferring. Our experiments show that the proposed approach indeed improves the readability of EL images and provides better visualization of solar cell defects.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.