Although lipopolysaccharide (LPS) is regarded as an inducer of inflammation, previous studies have suggested that repetitive low-dose LPS has neuroprotective effects via immunomodulation of microglia, resident macrophages of brain. However, microglia transformed by the stimulus of repetitive low-dose LPS (REPELL-microglia) are not well characterized, whereas microglia transformed by repetitive high-dose LPS are well studied as an endotoxin tolerance model in which the induction of pro-inflammatory molecules is suppressed. In this study, to characterize REPELL-microglia, the gene expression and phagocytic activity of REPELL-microglia were analyzed with the murine C8-B4 microglia cell line. The REPELL-microglia were characterized by a high expression of pro-inflammatory molecules (Nos2, Ccl1, IL-12B, and CD86), anti-inflammatory molecules (IL-10, Arg1, Il13ra2, and Mrc1), and neuroprotective molecules (Ntf5, Ccl7, and Gipr). In addition, the phagocytic activity of REPELL-microglia was promoted as high as that of microglia transformed by single low-dose LPS. These results suggest the potential of REPELL-microglia for inflammatory regulation, neuroprotection, and phagocytic clearance. Moreover, this study revealed that gene expression of REPELL-microglia was distinct from that of microglia transformed by repetitive high-dose LPS treatment, suggesting the diversity of microglia transformation by different doses of LPS.
Diabetes-related cognitive dysfunction (DRCD) is a serious complication induced by diabetes. However, there are currently no specific remedies for DRCD. Here, we show that streptozotocin-induced DRCD can be prevented without causing side effects through oral administration of lipopolysaccharide (LPS) derived from Pantoea agglomerans. Oral administration of LPS (OAL) prevented the cerebral cortex atrophy and tau phosphorylation induced by DRCD. Moreover, we observed that neuroprotective transformation of microglia (brain tissue-resident macrophages) is important for preventing DRCD through OAL. These findings are contrary to the general recognition of LPS as an inflammatory agent when injected systemically. Furthermore, our results strongly suggest that OAL promotes membrane-bound colony stimulating factor 1 (CSF1) expression on peripheral leukocytes, which activates the CSF1 receptor on microglia, leading to their transformation to the neuroprotective phenotype. Taken together, the present study indicates that controlling innate immune modulation through the simple and safe strategy of OAL can be an innovative prophylaxis for intractable neurological diseases such as DRCD. In a sense, for modern people living in an LPS-depleted environment, OAL is like a time machine that returns microglia to the good old LPS-abundant era.
Hepatic dysfunction is one of the clinical features in severe malaria. However, the mechanism of hepatic injury during malaria is still unknown. Myeloid-related protein (MRP) 14 is abundantly expressed by myeloid cells and involved in various inflammatory diseases. We previously reported that serum MRP14 is elevated in mice infected with Plasmodium berghei ANKA. In order to verify whether extracellular MRP14 is involved in the pathology of hepatic injury during rodent malaria, we intravenously administrated recombinant MRP14 (rMRP14) to mice infected with P. berghei ANKA. The administration of rMRP14 did not affect parasite number or hematocrit. On the other hand, the hepatic injury was exacerbated in rMRP14-treated mice, and their serum concentration of hepatic enzymes increased significantly more than PBS-treated controls. Immunohistochemical analysis of the liver showed that more MRP14+ macrophages accumulated in rMRP14-treated mice than PBS-treated controls after infection. The administration of rMRP14 also promotes the up-regulation of pro-inflammatory molecules in the liver, such as iNOS, IL-1β, IL-12, and TNF-α. Even in the absence of Plasmodium infection, administration of rMRP14 could induce the accumulation of MRP14+ macrophages and up-regulation of the pro-inflammatory molecules in the liver of naïve mice. The results indicate that MRP14 promotes the accumulation of MRP14+ cells and the up-regulation of pro-inflammatory molecules and NO, which amplify inflammatory cascade leading to hepatic injury. In conclusion, MRP14 is a one of key molecules for liver inflammation during rodent malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.