[1] A biogeochemical model, Denitrification-Decomposition (DNDC), was modified to enhance its capacity of predicting greenhouse gas (GHG) emissions from paddy rice ecosystems. The major modifications focused on simulations of anaerobic biogeochemistry and rice growth as well as parameterization of paddy rice management. The new model was tested for its sensitivities to management alternatives and variations in natural conditions including weather and soil properties. The test results indicated that (1) varying management practices could substantially affect carbon dioxide (CO 2 ), methane (CH 4 ), or nitrous oxide (N 2 O) emissions from rice paddies; (2) soil properties affected the impacts of management alternatives on GHG emissions; and (3) the most sensitive management practices or soil factors varied for different GHGs. For estimating GHG emissions under certain management conditions at regional scale, the spatial heterogeneity of soil properties (e.g., texture, SOC content, pH) are the major source of uncertainty. An approach, the most sensitive factor (MSF) method, was developed for DNDC to bring the uncertainty under control. According to the approach, DNDC was run twice for each grid cell with the maximum and minimum values of the most sensitive soil factors commonly observed in the grid cell. The simulated two fluxes formed a range, which was wide enough to include the ''real'' flux from the grid cell with a high probability. This approach was verified against a traditional statistical approach, the Monte Carlo analysis, for three selected counties or provinces in China, Thailand, and United States. Comparison between the results from the two methods indicated that 61-99% of the Monte Carlo-produced GHG fluxes were located within the MSAproduced flux ranges. The result implies that the MSF method is feasible and reliable to quantify the uncertainties produced in the upscaling processes. Equipped with the MSF method, DNDC modeled emissions of CO 2 , CH 4 , and N 2 O from all of the rice paddies in China with two different water management practices, i.e., continuous flooding and midseason drainage, which were the dominant practices before 1980 and in 2000, respectively. The modeled results indicated that total CH 4 flux from the simulated 30 million ha of Chinese rice fields ranged from 6.4 to 12.0 Tg CH 4 -C per year under the continuous flooding conditions. With the midseason drainage scenario, the national CH 4 flux from rice agriculture reduced to 1.7-7.9 Tg CH 4 -C. It implied that the water management change in China reduced CH 4 fluxes by 4.2-4.7 Tg CH 4 -C per year. Shifting the water management from continuous flooding to midseason drainage increased N 2 O fluxes by 0.13-0.20 Tg N 2 O-N/yr, although CO 2 fluxes were only slightly altered. Since N 2 O possesses a radiative forcing more than 10 times higher than CH 4 , the increase in N 2 O offset about 65% of the benefit gained by the decrease in CH 4 emissions.INDEX TERMS: 0315 Atmospheric Composition and Structure: Biosphere/atmosphere
[1] This article introduces an international regional experiment, East Asian Regional Experiment 2005 (EAREX 2005), carried out in March-April 2005 in the east Asian region, as one of the first phase regional experiments under the UNEP Atmospheric Brown Cloud (ABC) project, and discusses some outstanding features of aerosol characteristics and its direct radiative forcing in the east Asian region, with some comparison with the results obtained in another ABC early phase regional experiment, ABC Maldives Monsoon Experiment (APMEX) conducted in the south Asian region. Time series of aerosol optical thickness (AOT), single scattering albedo (SSA), aerosol extinction cross section profile and CO concentration shows that air pollutants and mineral dust were transported every 5 to 7 days in the EAREX region to produce SSA values at wavelength of 700 nm from 0.86 to 0.96 and large clear-sky shortwave forcing efficiency at 500 nm from 60 W m À2 to 90 W m À2 , though there are some unexplained inconsistencies depending on the evaluation method. The simulated whole-sky total forcing in the EAREX region is À1 to À2 W m À2 at TOA and À2 to À10 W m À2 at surface in March 2005 which is smaller in magnitude than in the APMEX region, mainly because of large cloud fraction in this region (0.70 at Gosan versus 0.51 at Hanimadhoo in the ISCCP total cloud fraction). We suggest there may be an underestimation of the forcing due to overestimation of the simulated cloudiness and aerosol scale height. On the other hand, the possible error in the simulated surface albedo may cause an overestimation of the magnitude of the forcing over the land area. We also propose simple formulae for shortwave radiative forcing to understand the role of aerosol parameters and surface condition to determine the aerosol forcing. Such simple formulae are useful to check the consistency among the observed quantities.
The effect of differing water management schemes on the emission of methane (CH4) from rice paddies to the atmosphere was studied in a Japanese paddy field. Using an automated sampling and analyzing system, the test site was divided into two plots: a continuously flooded plot which was maintained flooded by constant irrigation from May to August, and an intermittently drained plot in which short‐term draining practices were performed several times during the flooding period . The draining practice had a strong effect on CH4 emission. A large flush of CH4 emission was observed in the intermittently drained plot immediately after each drainage. It was followed by a rapid decrease in CH4 flux in most of the cases. A large flush of CH4 was observed after the final drainage at the end of August in the continuously flooded plot, accounting for about 7% of the total CH4 emitted in the plot. Total emission rates of CH4 during the cultivation period were 14.8 and 8.63 g m−2 for 1991 and 9.49 and 5.18 g m−2 for 1993 in the continuously flooded and intermittently drained plots, respectively. Companion N2O flux measurements showed that almost no N2O was emitted from either plot until the final drainage. These results indicate that short‐term draining practices strongly reduce CH4 emission from rice paddy fields, and that improvement in water management can be one of the most important mitigation strategies for CH4 emission from rice paddy fields.
No observed data have been found in the Fukushima Prefecture (FP) for the time-series of atmospheric radionuclides concentrations just after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident. Accordingly, current estimates of internal radiation doses from inhalation, and atmospheric radionuclide concentrations by atmospheric transport models are highly uncertain. Here, we present a new method for retrieving the hourly atmospheric 137Cs concentrations by measuring the radioactivity of suspended particulate matter (SPM) collected on filter tapes in SPM monitors which were operated even after the accident. This new dataset focused on the period of March 12–23, 2011 just after the accident, when massive radioactive materials were released from the FD1NPP to the atmosphere. Overall, 40 sites of the more than 400 sites in the air quality monitoring stations in eastern Japan were studied. For the first time, we show the spatio-temporal variation of atmospheric 137Cs concentrations in the FP and the Tokyo Metropolitan Area (TMA) located more than 170 km southwest of the FD1NPP. The comprehensive dataset revealed how the polluted air masses were transported to the FP and TMA, and can be used to re-evaluate internal exposure, time-series radionuclides release rates, and atmospheric transport models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.