A feeding experiment was conducted to investigate the effect of Bacillus subtilis bacterium, on larval growth and development rate of Macrobrachium rosenbergii (de Man) during February 28 to April 8, 2005 in University Putra Malaysia hatchery. Newly hatched larvae of M. rosenbergii were reared with two dietary treatments consisting of newly hatched Artemia salina nauplii with B. subtilis (108 cells ml−1), and newly hatched A. salina nauplii without B. subtilis carried out in triplicate in 60‐L aquarium (50 L−1). After trial, the larvae that fed B. subtilis‐treated Artemia naupli were found to have higher survival and a faster rate of metamorphosis than larvae that were fed with nontreated Artemia naupli. There were significant differences between B. subtilis‐treated Artemia naupli and nontreated Artemia diet in larval growth and development rate of metamorphosis (P < 0.05). Larval survival after 40 days was significantly greater (P < 0.05) in the B. subtilis‐treated groups (55.3 ± 1.02) compared with the nontreated groups (36.2 ± 5.02%).
Fish diseases are often caused either by bacteria, viruses, fungi, parasites, or a combination of these pathogens. Of these, bacterial fish diseases are considered to be a major problem in the aquaculture industry. Hence, the prevention of such diseases by proper vaccination is one of the integral strategies in fish health management, aimed at reducing the fish mortality rate in the aquaculture farms. Vaccination offers an effective yet low-cost solution to combat the risk of disease in fish farming. An appropriate vaccination regime to prevent bacterial diseases offers a solution against the harmful effects of antibiotic applications. This review discusses the role of live-attenuated vaccine in controlling bacterial diseases and the development of such vaccines and their vaccination strategy. The current achievements and potential applications of live-attenuated and combined vaccines are also highlighted. Vaccine development is concluded to be a demanding process, as it must satisfy the requirements of the aquaculture industry.
This study describes the isolation and pathogenicity of Streptococcus iniae in cultured red hybrid tilapia (Nile Tilapia Oreochromis niloticus × Mozambique Tilapia O. mossambicus) in Malaysia. The isolated gram-positive S. iniae appeared punctiform, transparently white, catalase and oxidase negative and produced complete β-hemolysis on blood agar, while a PCR assay resulted in the amplification of the 16 S rRNA gene and lactate oxidase encoded genes. The isolate was sensitive to tetracycline, vancomycin, and bacitracin but was resistant to streptomycin, ampicillin, penicillin, and erythromycin. Pathogenicity trials conducted in local red hybrid tilapia (mean ± SE = 20.00 ± 0.45 g) showed 90.0, 96.7, and 100.0% mortality within 14 d postinfection following intraperitoneal exposure to 10, 10, and 10 CFU/mL of the pathogen, respectively. The clinical signs included erratic swimming, lethargy, and inappetance at 6 h postinfection, while mortality was recorded at less than 24 h postinfection in all infected groups. The LD of S. iniae against the red hybrid tilapia was 10 CFU/mL. The post mortem examinations revealed congested livers, kidneys, and spleens of the infected fish. This is the first report of S. iniae experimental infection in cultured red hybrid tilapia in Malaysia. Received January 20, 2017; accepted July 16, 2017.
This study investigated the effects of Enterococcus faecalis on digestive enzyme activities and short-chain fatty acid production in fish intestine, resistance against Aeromonas hydrophila and humoral immunity response by 3 experiments on Javanes carp (Puntius gonionotus). The experiment 1 revealed that diet supplemented with E. faecalis significantly (P < 0.05) increased protease and lipase activities compared to control fed fish. Moreover, E. faecalis supplementation significantly enhanced the production of propionic and butyric acid in the intestine, while no significant difference (P > 0.05) in acetic acid production was observed. In the challenge study (experiment 2), fish were injected (intraperitoneal) with 10 7 A. hydrophila per ml and survival was significantly improved when fish were fed diet supplemented with E. faecalis compared to control fish. In experiment 3, dietary E. faecalis affected immune system response as fish fed the probiont and exposed to 10 6 A. hydrophila per ml displayed significantly elevated antibody levels compared to control fed fish. Fish fed diet supplemented with E. faecalis but not exposed to the pathogen revealed significantly higher antibody level than control fish (P < 0.05). Therefore, E. faecalis can be used as a probiotic in Javanese carp farming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.