Thanks to a change of unknown we compare two elliptic quasilinear problems with Dirichlet data in a bounded domain of R N . The first one, of the form − p u = β(u)|∇u| p + λf (x), where β is nonnegative, involves a gradient term with natural growth. The second one, of the form − p v = λf (x)(1 + g(v)) p−1 where g is nondecreasing, presents a source term of order 0. The correlation gives new results of existence, nonexistence and multiplicity for the two problems. To cite this article: H.A. Hamid, M.F. Bidaut-Véron, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
RésuméCorrélation entre deux problèmes quasilinéaires elliptiques avec terme de source relatif à la fonction ou à son gradient. A l'aide d'un changement d'inconnue nous comparons deux problèmes elliptiques quasilinéaires avec conditions de Dirichlet dans un domaine borné Ω de R N . Le premier, de la forme − p u = β(u)|∇u| p + λf (x), où β est positif, comporte un terme de gradient à croissance critique. Le second, de la forme − p v = λf (x)(1 + g(v)) p−1 où g est croissante, contient un terme de source d'ordre 0. La comparaison donne des résultats nouveaux d'existence, nonexistence et multiplicité pour les deux problèmes. Pour citer cet article : H.A. Hamid, M.F. Bidaut-Véron, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
We establish a precise connection between two elliptic quasilinear problems with Dirichlet data in a bounded domain of R N . The first one, of the forminvolves a source gradient term with natural growth, where β is nonnegative, λ > 0, f (x) ≧ 0, and α is a nonnegative measure. The second one, of the formpresents a source term of order 0, where g is nondecreasing, and µ is a nonnegative measure. Here β and g can present an asymptote. The correlation gives new results of existence, nonexistence, regularity and multiplicity of the solutions for the two problems, without or with measures. New informations on the extremal solutions are given when g is superlinear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.