Purpose: Rho GDP dissociation inhibitor 2 (RhoGDI2) has been identified as a regulator of Rho family GTPase. However, there is currently no direct evidence suggesting whether RhoGDI2 activates or inhibits Rho family GTPase in vivo (and which type), and the role of RhoGDI2 in tumor remains controversial. Here, we assessed the effects of RhoGDI2 expression on gastric tumor growth and metastasis progression. Experimental Design: Proteomic analysis was done to investigate the tumor-specific protein expression in gastric cancer and RhoGDI2 was selected for further study. Immunohistochemistry was used to detect RhoGDI2 expression in clinical samples of primary gastric tumor tissues which have different pathologic stages. Gain-of-function and loss-of-function approaches were done to examine the malignant phenotypes of the RhoGDI2-expressing or RhoGDI2-depleting cells. Results: RhoGDI2 expression was correlated positively with tumor progression and metastasis potential in human gastric tumor tissues, as well as cell lines. The forced expression of RhoGDI2 caused a significant increase in gastric cancer cell invasion in vitro, and tumor growth, angiogenesis, and metastasis in vivo, whereas RhoGDI2 depletion evidenced opposite effects. Conclusion: Our findings indicate that RhoGDI2 is involved in gastric tumor growth and metastasis, and that RhoGDI2 may be a useful marker for tumor progression of human gastric cancer.
Medically relevant roles of receptor-mediated sphingosine 1-phosphate (S1P) signaling have become a successful or promising target for multiple sclerosis or cerebral ischemia. Animal-based proof-of-concept validation for the latter is particularly through the neuroprotective efficacy of FTY720, a non-selective S1P receptor modulator, presumably via activation of S1P. In spite of a clear link between S1P signaling and cerebral ischemia, it remains unknown whether the role of S1P is pathogenic or neuroprotective. Here, we investigated the involvement of S1P along with its role in cerebral ischemia using a transient middle cerebral artery occlusion ("tMCAO") model. Brain damage following tMCAO, as assessed by brain infarction, neurological deficit score, and neural cell death, was reduced by oral administration of AUY954, a selective S1P modulator as a functional antagonist, in a therapeutic paradigm, indicating that S1P is a pathogenic mediator rather than a neuroprotective mediator. This pathogenic role of S1P in cerebral ischemia was reaffirmed because tMCAO-induced brain damage was reduced by genetic knockdown with an intracerebroventricular microinjection of S1P shRNA lentivirus into the brain. Genetic knockdown of S1P or AUY954 exposure reduced microglial activation, as assessed by reduction in the number of activated microglia and reversed morphology from amoeboid to ramified, and microglial proliferation in ischemic brain. Its role in microglial activation was recapitulated in lipopolysaccharide-stimulated primary mouse microglia, in which the mRNA expression level of TNF-α and IL-1β, well-known markers for microglial activation, was reduced in microglia transfected with S1P siRNA. These data suggest that the pathogenic role of S1P is associated with microglial activation in ischemic brain. Additionally, the pathogenic role of S1P in cerebral ischemia appears to be associated with the blood-brain barrier disruption and brain-derived neurotrophic factor (BDNF) downregulation. Overall, findings from the current study clearly identify S1P signaling as a pathogenic factor in transient focal cerebral ischemia, further implicating S1P antagonists including functional antagonists as plausible therapeutic agents for human stroke.
Lens epithelial cells undergo epithelial-mesenchymal transition (EMT) after injury as in cataract extraction, leading to fibrosis of the lens capsule. We have recently shown that TGF-beta-induced EMT in lens epithelial cells depends on PI3 kinase/Akt signal pathway. In this report, we suggest Smad3 is necessary for TGF-beta-induced EMT by showing that the expression of dominant-negative Smad3 blocks the expression of alpha-smooth muscle actin (alpha-SMA) and morphological changes. We also show that TGF-beta induces a biphasic change in Rho activity, and that Y27632, a selective inhibitor of Rho effector ROCK, inhibits TGF-beta-induced EMT in vitro and in vivo. We finally show that Smad3 activation and Rho signal activation is independent each other. All of these findings suggest that Rho/ROCK activation together with Smad3 is necessary for TGF-beta-induced EMT in lens epithelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.