Background A comprehensive evaluation of the independent and combined associations of estimated glomerular filtration rate (eGFR) and albuminuria with mortality is required for assessment of the impact of kidney function on risk in the general population, with implications for improving the definition and staging of chronic kidney disease (CKD). Methods A collaborative meta-analysis of general population cohorts was undertaken to pool standardized data for all-cause and cardiovascular mortality. The two kidney measures and potential confounders from 14 studies (105,872 participants; 730,577 person-years) with urine albumin-to-creatinine ratio (ACR) measurements and seven studies (1,128,310 participants; 4,732,110 person-years) with urine protein dipstick measurements were modeled. Findings In ACR studies, mortality risk was unrelated to eGFR between 75-105 ml/min/1·73 m2 and increased at lower eGFR. Adjusted hazard ratios (HRs) for all-cause mortality at eGFR 60, 45, and 15 (versus 95) ml/min/1·73 m2 were 1·18 (95% CI: 1·05-1·32), 1·57 (1·39-1·78), and 3·14 (2·39-4·13), respectively. ACR was associated with mortality risk linearly on the log-log scale without threshold effects. Adjusted HRs for all-cause mortality at ACR 10, 30, and 300 (versus 5) mg/g were 1·20 (1·15-1·26), 1·63 (1·50-1·77), and 2·22 (1·97-2·51). eGFR and ACR were multiplicatively associated with mortality without evidence of interaction. Similar findings were observed for cardiovascular mortality and in dipstick studies. Interpretation Lower eGFR (<60 ml/min/1·73 m2) and higher albuminuria (ACR ≥10 mg/g) were independent predictors of mortality risk in the general population. This study provides quantitative data for using both kidney measures for risk evaluation and CKD definition and staging.
Nitrogen (N)-doped carbon materials were shown in recent studies to have promising catalytic activity for oxygen reduction reaction (ORR) as a metal-free alternative to platinum, but the underlying molecular mechanism or even the active sites for high catalytic efficiency are still missing or controversial both experimentally and theoretically. We report here the results of periodic density functional theory (DFT) calculations about the ORR at the edge of a graphene nanoribbon (GNR). The edge structure and doped-N near the edge are shown to enhance the oxygen adsorption, the first electron transfer, and also the selectivity toward the four-electron, rather than the two-electron, reduction pathway. We find that the outermost graphitic nitrogen site in particular gives the most desirable characteristics for improved ORR activity, and hence the active site. However, the latter graphitic nitrogen becomes pyridinic-like in the next electron and proton transfer reaction via the ring-opening of a cyclic C-N bond. This inter-conversion between the graphitic and pyridinic sites within a catalytic cycle may reconcile the controversy whether the pyridinic, graphitic, or both nitrogens are active sites.
Currently, there is considerable interest in developing advanced rechargeable batteries that boast efficient distribution of electricity and economic feasibility for use in large-scale energy storage systems. Rechargeable aqueous zinc batteries are promising alternatives to lithium-ion batteries in terms of rate performance, cost, and safety. In this investigation, we employ Cu3(HHTP)2, a two-dimensional (2D) conductive metal-organic framework (MOF) with large one-dimensional channels, as a zinc battery cathode. Owing to its unique structure, hydrated Zn2+ ions which are inserted directly into the host structure, Cu3(HHTP)2, allow high diffusion rate and low interfacial resistance which enable the Cu3(HHTP)2 cathode to follow the intercalation pseudocapacitance mechanism. Cu3(HHTP)2 exhibits a high reversible capacity of 228 mAh g−1 at 50 mA g−1. At a high current density of 4000 mA g−1 (~18 C), 75.0% of the initial capacity is maintained after 500 cycles. These results provide key insights into high-performance, 2D conductive MOF designs for battery electrodes.
Considering the promising electrochemical performance of the recently reported pyrophosphate family in lithium ion batteries as well as the increasing importance of sodium ion batteries (SIBs) for emerging large‐scale applications, here, the crystal structure, electrochemical properties, and thermal stability of Na2FeP2O7, the first example ever reported in the pyrophosphate family for SIBs, are investigated. Na2FeP2O7 maintains well‐defined channel structures (triclinic framework under the P1 space group) and exhibits a reversible capacity of ≈90 mAh g−1 with good cycling performance. Both quasi‐equilibrium measurements and first‐principles calculations consistently indicate that Na2FeP2O7 undergoes two kinds of reactions over the entire voltage range of 2.0–4.5 V (vs Na/Na+): a single‐phase reaction around 2.5 V and a series of two‐phase reactions in the voltage range of 3.0–3.25 V. Na2FeP2O7 shows excellent thermal stability up to 500 °C, even in the partially desodiated state (NaFeP2O7), which suggests its safe character, a property that is very critical for large‐scale battery applications.
A combined experimental and computational study on Na 3 V 2 (PO 4 ) 3 has been carried out to investigate its structural, electrochemical, and thermal properties as a sodium battery cathode. The synthesized material by a sol-gel process was well-indexed to the R-3m space group in the framework of a rhombohedral NASICON structure. Galvanostatic measurements indicate that at 3.4 V vs. Na/Na + , 1.4 Na reversibly reacts with each Na 3 V 2 (PO 4 ) 3 , which corresponds to a specific capacity of 84.8 mAh/g. Moreover, this material shows excellent rate capabilities and good cycling performance. Ex-situ XRD analyzes indicate that this material reacts with Na ions based on a reversible two-phase reaction. Thermal analyzes employing TGA/DSC and In-situ XRD at various temperatures show that this material maintains good thermal stability up to 450 • C even in the desodiated state. The promising electrochemical and thermal properties suggest that this material with the well-defined NASICON structure is a promising cathode for large-scale sodium rechargeable batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.