Autotaxin (ATX, NPP2) has recently been shown to be the lysophospholipase D responsible for synthesis of the bioactive lipid lysophosphatidic acid (LPA). LPA has a well-established role in cancer, and the production of LPA is consistent with the cancer-promoting actions of ATX. Increased ATX and LPA receptor expression have been found in numerous cancer cell types. The current study has combined ligand-based computational approaches (binary quantitative structure-activity relationship), medicinal chemistry, and experimental enzymatic assays to optimize a previously identified small molecule ATX inhibitor, H2L 7905958 (1). Seventy prospective analogs were analyzed via computational screening, from which 30 promising compounds were synthesized and screened to assess efficacy, potency, and mechanism of inhibition. This approach has identified four analogs as potent as or more potent than the lead. The most potent analog displayed an IC(50) of 900 nM with respect to ATX-mediated FS-3 hydrolysis with a K(i) of 700 nM, making this compound approximately 3-fold more potent than the previously described lead.
Phosphatidylinositol polyphosphate lipids, such as phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3), regulate critical biological processes, many of which are aberrant in disease. These lipids often act as site-specific ligands in interactions that enforce membrane-association of protein binding partners. Herein, we describe the development of bifunctional activity probes corresponding to the headgroup of PI(3,4,5)P3 that are effective for identifying and characterizing protein binding partners from complex samples, namely cancer cell extracts. These probes contain both a photoaffinity tag for covalent labeling of target proteins as well as a secondary handle for subsequent detection or manipulation of labeled proteins. Probes bearing different secondary tags were exploited, either by direct attachment of a fluorescent dye for optical detection or by using an alkyne that can be derivatized after protein labeling via click chemistry. First, we describe the design and modular synthetic strategy used to generate multiple probes with different reporter tags of use for characterizing probe-labeled proteins. Next, we report initial labeling studies using purified protein, the PH domain of Akt, in which probes were found to label this target, as judged by on-gel detection. Furthermore, protein labeling was abrogated by controls including competition with an unlabeled PI(3,4,5)P3 headgroup analog as well as through protein denaturation, indicating specific labeling. In addition, probes featuring different linker lengths between the PI(3,4,5)P3 headgroup and photoaffinity tag led to variations in protein labeling, indicating that a shorter linker was more effective in this case. Finally, proteomic labeling studies were performed using cell extracts, labeled proteins were observed by in-gel detection and characterized using post-labeling with biotin, affinity chromatography and identification via tandem mass spectrometry. These studies yielded a total of 265 proteins, including both known and novel candidate PI(3,4,5)P3-binding proteins.
Lipids play critical roles in a litany of physiological and pathophysiological events, often through the regulation of protein function. These activities are generally difficult to characterize, however, because the membrane environment in which lipids operate is very complex. Moreover, lipids have a diverse range of biological functions, including the recruitment of proteins to membrane surfaces, actions as small-molecule ligands, and covalent protein modification through lipidation. Advancements in the development of bioorthogonal reactions have facilitated the study of lipid activities by providing the ability to selectively label probes bearing bioorthogonal tags within complex biological samples. In this Account, we discuss recent efforts to harness the beneficial properties of bioorthogonal labeling strategies in elucidating lipid function. Initially, we summarize strategies for the design and synthesis of lipid probes bearing bioorthogonal tags. This discussion includes issues to be considered when deciding where to incorporate the tag, particularly the presentation within a membrane environment. We then present examples of the application of these probes to the study of lipid activities, with a particular emphasis on the elucidation of protein-lipid binding interactions. One such application involves the development of lipid and membrane microarray analysis as a high-throughput platform for characterizing protein-binding interactions. Here we discuss separate strategies for binding analysis involving the immobilization of either whole liposomes or simplified isolated lipid structures. In addition, we present the different strategies that have been used to derivatize membrane surfaces via bioorthogonal reactions, either by using this chemistry to produce functionalized lipid scaffolds that can be incorporated into membranes or through direct modification of intact membrane surfaces. We then provide an overview of the development of lipid activity probes to label and identify proteins that bind to a particular lipid from complex biological samples. This process involves the strategy of activity-based proteomics, in which proteins are collectively labeled on the basis of function (in this case, ligand binding) rather than abundance. We summarize strategies for designing and applying lipid activity probes that allow for the selective labeling and characterization of protein targets. Additionally, we briefly comment on applications other than studying protein-lipid binding. These include the generation of new lipid structures with beneficial properties, labeling of tagged lipids in live cells for studies involving fluorescence imaging, elucidation of covalent protein lipidation, and identification of biosynthetic lipid intermediates. These applications illustrate the early phase of the promising field of applying bioorthogonal chemistry to the study of lipid function.
Phosphatidylinositol polyphosphate lipids (PIPns) play key roles in important biological pathways, and defects in the signaling activities of these molecules have been implicated in a number of disease states. As such, it is necessary to understand the complex roles of these lipids in biological pathways, which often involve their actions as site‐specific ligands that recruit receptors to the surfaces of cellular membranes. However, the complex structures of PIPn family members, of which seven biologically active isomers exist, complicate studies. Derivatized analogs of the PIPn structures are beneficial as chemical tools for elucidating signaling and binding activities. Herein, we present an efficient approach to probe the generation in which amino conjugates of PIPn headgroups can be conveniently functionalized in the final step of the synthesis to obtain a number of derivatized analogs of use for different studies. In addition to the application of this strategy to generate PI‐(4,5)‐P2 headgroup probes, we also report the synthesis of PIPn–amine conjugates corresponding to all seven naturally existing isomers. This approach will be invaluable for generating the range of probe structures that is required to elucidate the intricacies of PIPn signaling. (© Wiley‐VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)
A modular photocurrent generation system, based on amphiphilic porphyrin and fullerene species assembled in a tethered lipid bilayer matrix, is reported here. The key findings are (1) the amount of photoactive species can be quantitatively controlled in each leaflet of the bilayer and (2) the sequential formation of the bilayer allows a directional organization of these agents on electrodes. Photocurrent generation from seven differently configured photoactive bilayers is studied, which reveals several critical factors in achieving efficient photoinduced electron transfer across lipid membranes. Detailed fluorescence characterization is performed on porphyrin samples either in liposomes or surface-tethered bilayers; and the observed fluorescence quenching is correlated with photocurrents generated from the electrode-immobilized lipid films. The potential usefulness of this lipid-based approach is discussed in connection to several existing molecular photovoltaic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.