Global climate change is already having significant impacts on arctic and alpine ecosystems, and ongoing increases in temperature and altered precipitation patterns will affect the strong seasonal patterns that characterize these temperature-limited systems. The length of the potential growing season in these tundra environments is increasing due to warmer temperatures and earlier spring snow melt. Here, we compare current and projected climate and ecological data from 20 Northern Hemisphere sites to identify how seasonal changes in the physical environment due to climate change will alter the seasonality of arctic and alpine ecosystems. We find that although arctic and alpine ecosystems appear similar under historical climate conditions, climate change will lead to divergent responses, particularly in the spring and fall shoulder seasons. As seasonality changes in the Arctic, plants will advance the timing of spring phenological events, which could increase plant nutrient uptake, production, and ecosystem carbon (C) gain. In alpine regions, photoperiod will constrain spring plant phenology, limiting the extent to which the growing season can lengthen, especially if decreased water availability from earlier snow melt and warmer summer temperatures lead to earlier senescence. The result could be a shorter growing season with decreased production and increased nutrient loss. These contrasting alpine and arctic ecosystem responses will have cascading effects on ecosystems, affecting community structure, biotic interactions, and biogeochemistry.
Rapid changes to the biosphere are altering ecological processes worldwide. Developing informed policies for mitigating the impacts of environmental change requires an exponential increase in the quantity, diversity, and resolution of field‐collected data, which, in turn, necessitates greater reliance on innovative technologies to monitor ecological processes across local to global scales. Automated digital time‐lapse cameras – “phenocams” – can monitor vegetation status and environmental changes over long periods of time. Phenocams are ideal for documenting changes in phenology, snow cover, fire frequency, and other disturbance events. However, effective monitoring of global environmental change with phenocams requires adoption of data standards. New continental‐scale ecological research networks, such as the US National Ecological Observatory Network (NEON) and the European Union's Integrated Carbon Observation System (ICOS), can serve as templates for developing rigorous data standards and extending the utility of phenocam data through standardized ground‐truthing. Open‐source tools for analysis, visualization, and collaboration will make phenocam data more widely usable.
Summary1. There is mounting evidence that leaf litter typically decomposes more rapidly beneath the plant species it derived from than beneath the different plant species, which has been called home-field advantage (HFA). It has been suggested that this HFA results from the local adaptation of soil communities to decompose the litter that they encounter most often, which probably comes from the plant species above them. 2. To test this hypothesis and to investigate how HFA varies over time and in relation to litter quality, we performed the first detailed assessment of HFA in relation to litter decomposition. We monitored decomposition over time in two reciprocal litter transplant experiments involving three high-elevation tree species that differ in litter quality. The three tree species used were trembling aspen (Populus tremuloides), lodgepole pine (Pinus contorta) and Engelmann spruce (Picea engelmannii). 3. First, we incubated litter from each of these species with soil biota extracted from stands of each tree species in a laboratory experiment and observed greater cumulative respiration, a measure of decomposition, when litter was incubated with its home soil biota. Second, we performed a field experiment, which demonstrated that the decomposition HFA also occurred under field conditions. In addition, this experiment demonstrated that despite increased mass loss at home, litter also immobilized more nitrogen when in its home environment. In both experiments, the HFA was most pronounced for pine litter, which is consistent with the hypothesis that HFA increases with decreasing litter quality. 4. Synthesis. As well as demonstrating conclusively that soil communities specialize in decomposing the litter produced by the plant species above them, our data challenge the widely held view that soil organisms are largely functionally redundant.
Extreme weather, fires, and land use and climate change are significantly reshaping interactions within watersheds throughout the world. Although hydrological-biogeochemical interactions within watersheds can impact many services valued by society, uncertainty associated with predicting hydrologydriven biogeochemical watershed dynamics remains high. With an aim to reduce this uncertainty, an approximately 300-km 2 mountainous headwater observatory has been developed at the East River, CO, watershed of the Upper Colorado River Basin. The site is being used as a testbed for the Department of Energy supported Watershed Function Project and collaborative efforts. Building on insights gained from research at the "sister" Rifle, CO, site, coordinated studies are underway at the East River site to gain a predictive understanding of how the mountainous watershed retains and releases water, nutrients, carbon, and metals. In particular, the project is exploring how early snowmelt, drought, and other disturbances influence hydrological-biogeochemical watershed dynamics at seasonal to decadal timescales. A system-of-systems perspective and a scale-adaptive simulation approach, involving the combined use of archetypal watershed subsystem "intensive sites" are being tested at the site to inform aggregated watershed predictions of downgradient exports. Complementing intensive site hydrological, geochemical, geophysical, microbiological, geological, and vegetation datasets are long-term, distributed measurement stations and specialized experimental and observational campaigns. Several recent research advances provide insights about the intensive sites as well as aggregated watershed behavior. The East River "community testbed" is currently hosting scientists from more than 30 institutions to advance mountainous watershed methods and understanding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.