Cationic palladium catalysts have been used to cooligomerize ethylene and carbon monoxide. At high ethylene/CO ratios (m /m = 10:1) in methylene chloride as a solvent, unsaturated alternating cooligomers of the general structure R[C(O)CH2CH2]mH ( m ≥ 1 ; R ≡CH2=CH-, CH2=CHCH2CH2- and CH3CH = CHCH2-) were obtained for the first time. Single component catalyst precursors [(allyl)Pd(P^X )]+Y- (P^X = Ph2P(CH2)nC(= O )OR, Ph2P(CH2)2P(=O)Ph2, Ph2P(CH2)nPh2P(CH2)2S (=O )Ph, n = 1 - 3 , R = Me, Et; Y- = BF4-, SbF6- ) with bidentate P,O- and P,S-ligands as well as in situ catalysts with unfunctionalized phosphine ligands were used. With P"Bu3 as a ligand, selectivities for ethylvinylketone of 40% based on the CO converted were obtained. The hemilabile phosphino-ester and phosphinothiophene ligands behave like monodentate phosphines under catalytic conditions.
The Lewis acid-catalyzed addition of aziridines to ketenimines gave substituted pyrrolidonimines in 47-87% yields. The hard Lewis acid LiClO(4) proved to be superior to the soft [(PhCN)(2)PdCl(2)], affording higher yields under milder conditions. The reaction is regioselective and occurs with complete stereoselectivity using [(PhCN)(2)PdCl(2)] and with a small amount of racemization in the case of LiClO(4).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.