Purpose To investigate the impacts that a paternal high fat diet (HFD) has on embryology, ovarian/cumulus cell gene expression and COC metabolism from female offspring, using a mouse model. Methods Founder male mice were either fed a control diet (CD) or a HFD for 12 weeks. The HFD induced obesity but not diabetes, and founder males were then mated to normal weight CD fed female mice. Female offspring were maintained on a CD, super-ovulated, mated and the resultant zygotes were cultured to the blastocyst stage for embryo morphology, blastocyst cell number and apoptosis assessment. Ovaries and cumulus cells from offspring were collected for gene expression analysis of selected genes that maintain chromatin remodeling and endoplasmic reticulum (ER), metabolic and inflammatory homeostasis. Cumulus/oocyte complexes were also investigated for glucose uptake and lipid accumulation. Results Female offspring sired by obese fathers produced embryos with delayed development and impaired quality, displayed increases in ovarian expression of Glut1, Glut3 and Glut4, and an increase in cumulus cell expression of Glut4. Interestingly their COCs did take up more glucose, but did accumulate more lipid. Conclusions A paternal HFD is associated with subfertility in female offspring despite the offspring being fed a CD and this subfertility is concomitant with ovarian/cumulus cell molecular alterations and increased lipid accumulation.
Male obesity, which often co-presents with micronutrient deficiencies, is associated with sub-fertility. Here we investigate whether short-term dietary supplementation of micronutrients (zinc, selenium, lycopene, vitamins E and C, folic acid, and green tea extract) to obese mice for 12 days (designed to span the epididymal transit) could improve sperm quality and fetal outcomes. Five-week-old C57BL6 males were fed a control diet (CD, n = 24) or high fat diet (HFD, n = 24) for 10 weeks before allocation to the 12-day intervention of maintaining their original diets (CD, n = 12, HFD n = 12) or with micronutrient supplementation (CD + S, n = 12, HFD + S, n = 12). Measures of sperm quality (motility, morphology, capacitation, binding), sperm oxidative stress (DCFDA, MSR, and 8OHdG), early embryo development (2-cell cleavage, 8OHdG), and fetal outcomes were assessed. HFD + S males had reduced sperm intracellular reactive oxygen species (ROS) concentrations and 8OHdG lesions, which resulted in reduced 8OHdG lesions in the male pronucleus, increased 2-cell cleavage rates, and partial restoration of fetal weight similar to controls. Sub-fertility associated with male obesity may be restored with very short-term micronutrient supplementation that targets the timing of the transit of sperm through the epididymis, which is the developmental window where sperm are the most susceptible to oxidative damage.
Oxidative stress is prevalent among infertile men and is a significant cause of sperm DNA damage. Since sperm DNA damage may reduce embryo quality and increase miscarriage rates, it is possible that untreated sperm oxidative stress may impair in vitro fertilization (IVF) live birth rates. Given that the antioxidant Menevit is reported to reduce sperm DNA damage, it was hypothesized that men's consumption of this supplement may alter IVF outcomes. Therefore, a retrospective cohort study was conducted analyzing outcomes for couples undergoing their first fresh embryo transfer. Men were classified as controls if they were taking no supplements, health conscious controls if taking “general health” supplements, or Menevit users. Men with karyotype abnormalities, or cycles using donated, frozen and surgically extracted sperm were excluded. Among the final study cohort of 657 men, live birth rates were significantly higher in Menevit users than controls (multivariate adjusted odds ratio [OR]: 1.57, 95% confidence interval [CI]: 1.01–2.45, P = 0.046), but not between controls taking no supplements and those using general health supplements, thereby suggesting that potential health conscious behavior in supplement users is unlikely responsible for the superior outcomes in Menevit users. Interestingly, in a post hoc sensitivity analysis, live birth rates among Menevit users were statistically superior to controls for lean men (OR: 2.73, 95% CI: 1.18–6.28; P = 0.019), not their overweight/obese counterparts (OR: 1.29, 95% CI: 0.75–2.22, P = 0.37). The results of this large cohort study therefore support a positive association between men's use of the Menevit antioxidant during IVF treatment and live birth rates, especially in lean individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.