Francisella tularensis subsp. tularensis (type A) strain SCHU S4 is a prototypic strain of the pathogen that is highly virulent for humans and other mammals. Its intradermal (i.d.) 50% lethal dose (LD 50 ) for mice is <10 CFU. We discovered a spontaneous mutant, designated FSC043, of SCHU S4 with an i.d. LD 50 of >10 8 CFU. FSC043 effectively vaccinated mice against challenge with a highly virulent type A strain, and the protective efficacy was at least as good as that of F. tularensis LVS, an empirically attenuated strain which has been used as an efficacious human vaccine. Comparative proteomics was used to identify two proteins of unknown function that were identified as defective in LVS and FSC043, and deletion mutants of SCHU S4 were created for each of the two encoding genes. One mutant, the ⌬FTT0918 strain, failed to express a 58-kDa protein, had an i.d. LD 50 of ϳ10 5 CFU, and was found to be less capable than SCHU S4 of growing in peritoneal mouse macrophages. Mice that recovered from sublethal infection with the ⌬FTT0918 mutant survived when challenged 2 months later with >100 LD 50 s of the highly virulent type A strain FSC033. This is the first report of the generation of defined mutants of F. tularensis subsp. tularensis and their use as live vaccines.
The highly virulent bacterium Francisella tularensis is well adapted to the intracellular habitat but the mechanisms behind its intracellular survival have been elusive. Recently, it was shown that the bacterium is capable of escaping from the phagosome of human and mouse monocytic cells. Here it is shown that this escape is affected by gamma interferon (IFN-ª) treatment of mouse peritoneal exudate cells since in treated cells the proportion that escaped was significantly lower (80 %) than in untreated cells (97 %) as determined by transmission electron microscopy. By contrast, , 1 % of mutant bacteria lacking expression of a 23 kDa protein denoted IglC were able to escape from the phagosome. Infection with the˜iglCthe˜iglC strain complemented with the iglC gene resulted in 60 % of the bacteria escaping from the phagosome. Whereas IFN-ª treatment conferred a static effect on intracellular wild-type bacteria, the treatment had a bactericidal effect on the˜iglCthe˜iglC strain. The results show that the activation status of infected cells affects the escape of F. tularensis from the phagosome. An even more profound effect on this escape is related to expression of IglC by F. tularensis. Its absence rendered the mutant bacteria incapable of escaping from the phagosome and of multiplying intracellularly.
The Francisella tularensis live vaccine strain (LVS), in contrast to its iglC mutant, replicates in the cytoplasm of macrophages. We studied the outcome of infection of the murine macrophagelike cell line J774A.1 with LVS and with iglC, iglD, and mglA mutants, the latter of which is deficient in a global regulator. Compared to LVS, all of the mutants showed impaired intracellular replication up to 72 h, and the number of the mglA mutant bacteria even decreased. Colocalization with LAMP-1 was significantly increased for all mutants compared to LVS, indicating an impaired ability to escape into the cytoplasm. A lysosomal acidity-dependent dye accumulated in approximately 40% of the vacuoles containing mutant bacteria but not at all in vacuoles containing LVS. Preactivation of the macrophages with gamma interferon inhibited the intracellular growth of all strains and significantly increased acidification of phagosomes containing the mutants, but it only slightly increased the LAMP-1 colocalization. The intracellular replication and phagosomal escape of the iglC and iglD mutants were restored by complementation in trans. In conclusion, the IglC, IglD, and MglA proteins each directly or indirectly critically contribute to the virulence of F. tularensis LVS, including its intracellular replication, cytoplasmic escape, and inhibition of acidification of the phagosomes.
Francisella tularensis is a facultative intracellular bacterial pathogen capable of proliferating within host macrophages. The mechanisms that explain the differences in virulence between various strains of the species are not well characterized. In the present study, we show that both attenuated (strain LVS) and virulent (strains FSC200 and SCHU S4) strains of the pathogen replicate at similar rates in resting murine peritoneal exudate cells (PEC). However, when PEC were activated by exposure to gamma interferon (IFN-␥), they killed LVS more rapidly than virulent strains of the pathogen. Addition of N G -monomethyl-L-arginine, an inhibitor of inducible nitric oxide synthase, to IFN-␥-treated PEC, completely inhibited killing of the virulent strains, whereas it only partially blocked the killing of LVS. Similarly, in a cell-free system, SCHU S4 and FSC200 were more resistant to killing by H 2 O 2 and ONOO ؊ than F. tularensis LVS. Catalase encoded by katG is a bacterial factor that can detoxify bactericidal compounds such as H 2 O 2 and ONOO ؊ . To investigate its contribution to the virulence of F. tularensis, katG deletion-containing mutants of SCHU S4 and LVS were generated. Both mutants demonstrated enhanced susceptibility to H 2 O 2 in vitro but replicated as effectively as the parental strains in unstimulated PEC. In mice, LVS-⌬katG was significantly attenuated compared to LVS whereas SCHU S4-⌬katG, despite slower replication, killed mice as quickly as SCHU S4. This implies that clinical strains of the pathogen have katG-independent mechanisms to combat the antimicrobial effects exerted by H 2 O 2 and ONOO ؊ , the loss of which could have contributed to the attenuation of LVS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.