Myopathies and muscular dystrophies (M-MDs) are genetically heterogeneous diseases, with >100 identified genes, including the giant and complex titin (TTN) and nebulin (NEB) genes. Next-generation sequencing technology revolutionized M-MD diagnosis and revealed high frequency of TTN and NEB variants. We developed a next-generation sequencing diagnostic strategy targeted to the coding sequences of 135 M-MD genes. Comparison of two targeted capture technologies (SeqCap EZ Choice library capture kit and Nextera Rapid Capture Custom Enrichment kit) and of two whole-exome sequencing kits (SureSelect V5 and TruSeq RapidExome capture) revealed best coverage with the SeqCap EZ Choice protocol. A marked decrease in coverage was observed with the other kits, affecting mostly the first exons of genes and the repeated regions of TTN and NEB. Bioinformatics analysis strategy was fine-tuned to achieve optimal detection of variants, including small insertions/deletions (INDELs) and copy number variants (CNVs). Analysis of a cohort of 128 patients allowed the detection of 52 substitutions, 13 INDELs (including a trinucleotide repeat expansion), and 3 CNVs. Two INDELs were localized in the repeated regions of NEB, suggesting that these mutations may be frequent but underestimated. A large deletion was also identified in TTN that is, to our knowledge, the first published CNV in this gene.
Next generation sequencing (NGS) has allowed the titin gene ( TTN ) to be identified as a major contributor to neuromuscular disorders, with high clinical heterogeneity. The mechanisms underlying the phenotypic variability and the dominant or recessive pattern of inheritance are unclear. Titin is involved in the formation and stability of the sarcomeres. The effects of the different TTN variants can be harmless or pathogenic (recessive or dominant) but the interpretation is tricky because the current bioinformatics tools can not predict their functional impact effectively. Moreover, TTN variants are very frequent in the general population. The combination of deep phenotyping associated with RNA molecular analyses, western blot (WB) and functional studies is often essential for the interpretation of genetic variants in patients suspected of titinopathy. In line with the current guidelines and suggestions, we implemented for patients with skeletal myopathy and with potentially disease causing TTN variant(s) an integrated genotype-transcripts-protein-phenotype approach, associated with phenotype and variants segregation studies in relatives and confrontation with published data on titinopathies to evaluate pathogenic effects of TTN variants (even truncating ones) on titin transcripts, amount, size and functionality. We illustrate this integrated approach in four patients with recessive congenital myopathy.
Interpretation of next-generation sequencing constitutes the main limitation of molecular diagnostics. In diagnosing myopathies and muscular dystrophies, another issue is efficiency in predicting the pathogenicity of variants identified in large genes, especially TTN; current in silico prediction tools show limitations in predicting and ranking the numerous variants of such genes. We propose a variant-prioritization tool, the MoBiDiCprioritization algorithm (MPA). MPA is based on curated interpretation of data on previously reported variants, biological assumptions, and splice and missense predictors, and is used to prioritize all types of single-nucleotide variants. MPA was validated by comparing its sensitivity and specificity to those of dbNSFP database prediction tools, using a data set composed of DYSF, DMD, LMNA, NEB, and TTN variants extracted from expert-reviewed and ExAC databases. MPA obtained the best annotation rates for missense and splice variants. As MPA aggregates the results from several predictors, individual predictor errors are counterweighted, improving the sensitivity and specificity of missense and splice variant predictions. We propose a sequential use of MPA, beginning with the selection of variants with higher scores and followed by, in the absence of candidate pathologic variants, consideration of variants with lower scores. We provide scripts and documentation for free academic use and a validated annotation pipeline scaled for panel and exome sequencing to prioritize single-nucleotide variants from a VCF file.
BackgroundCongenital nemaline myopathies are rare pathologies characterised by muscle weakness and rod-shaped inclusions in the muscle fibres.MethodsUsing next-generation sequencing, we identified three patients with pathogenic variants in the Troponin T type 1 (TNNT1) gene, coding for the troponin T (TNT) skeletal muscle isoform.ResultsThe clinical phenotype was similar in all patients, associating hypotonia, orthopaedic deformities and progressive chronic respiratory failure, leading to early death. The anatomopathological phenotype was characterised by a disproportion in the muscle fibre size, endomysial fibrosis and nemaline rods. Molecular analyses of TNNT1 revealed a homozygous deletion of exons 8 and 9 in patient 1; a heterozygous nonsense mutation in exon 9 and retention of part of intron 4 in muscle transcripts in patient 2; and a homozygous, very early nonsense mutation in patient 3.Western blot analyses confirmed the absence of the TNT protein resulting from these mutations.DiscussionThe clinical and anatomopathological presentations of our patients reinforce the homogeneous character of the phenotype associated with recessive TNNT1 mutations. Previous studies revealed an impact of recessive variants on the tropomyosin-binding affinity of TNT. We report in our patients a complete loss of TNT protein due to open reading frame disruption or to post-translational degradation of TNT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.