Noninvasive, radiological image-based detection and stratification of Gleason patterns can impact clinical outcomes, treatment selection, and the determination of disease status at diagnosis without subjecting patients to surgical biopsies. We present machine learning-based automatic classification of prostate cancer aggressiveness by combining apparent diffusion coefficient (ADC) and T2-weighted (T2-w) MRI-based texture features. Our approach achieved reasonably accurate classification of Gleason scores (GS) 6(3 + 3) vs. ≥7 and 7(3 + 4) vs. 7(4 + 3) despite the presence of highly unbalanced samples by using two different sample augmentation techniques followed by feature selection-based classification. Our method distinguished between GS 6(3 + 3) and ≥7 cancers with 93% accuracy for cancers occurring in both peripheral (PZ) and transition (TZ) zones and 92% for cancers occurring in the PZ alone. Our approach distinguished the GS 7(3 + 4) from GS 7(4 + 3) with 92% accuracy for cancers occurring in both the PZ and TZ and with 93% for cancers occurring in the PZ alone. In comparison, a classifier using only the ADC mean achieved a top accuracy of 58% for distinguishing GS 6(3 + 3) vs. GS ≥7 for cancers occurring in PZ and TZ and 63% for cancers occurring in PZ alone. The same classifier achieved an accuracy of 59% for distinguishing GS 7(3 + 4) from GS 7(4 + 3) occurring in the PZ and TZ and 60% for cancers occurring in PZ alone. Separate analysis of the cancers occurring in TZ alone was not performed owing to the limited number of samples. Our results suggest that texture features derived from ADC and T2-w MRI together with sample augmentation can help to obtain reasonably accurate classification of Gleason patterns.
ContextComparative reviews of whole-body magnetic resonance imaging (WB-MRI) and positron emission tomography/computed tomography (CT; with different radiotracers) have shown that metastasis detection in advanced cancers is more accurate than with currently used CT and bone scans. However, the ability of WB-MRI and positron emission tomography/CT to assess therapeutic benefits has not been comprehensively evaluated. There is also considerable variability in the availability and quality of WB-MRI, which is an impediment to clinical development. Expert recommendations for standardising WB-MRI scans are needed, in order to assess its performance in advanced prostate cancer (APC) clinical trials.ObjectiveTo design recommendations that promote standardisation and diminish variations in the acquisition, interpretation, and reporting of WB-MRI scans for use in APC.Evidence acquisitionAn international expert panel of oncologic imagers and oncologists with clinical and research interests in APC management assessed biomarker requirements for clinical care and clinical trials. Key requirements for a workable WB-MRI protocol, achievable quality standards, and interpretation criteria were identified and synthesised in a white paper.Evidence synthesisThe METastasis Reporting and Data System for Prostate Cancer guidelines were formulated for use in all oncologic manifestations of APC.ConclusionsUniformity in imaging data acquisition, quality, and interpretation of WB-MRI are essential for assessing the test performance of WB-MRI. The METastasis Reporting and Data System for Prostate Cancer standard requires validation in clinical trials of treatment approaches in APC.Patient summaryMETastasis Reporting and Data System for Prostate Cancer represents the consensus recommendations on the performance, quality standards, and reporting of whole-body magnetic resonance imaging, for use in all oncologic manifestations of advanced prostate cancer. These new criteria require validation in clinical trials of established and new treatment approaches in advanced prostate cancer.
Tumour heterogeneity in cancers has been observed at the histological and genetic levels, and increased levels of intra-tumour genetic heterogeneity have been reported to be associated with adverse clinical outcomes. This review provides an overview of radiomics, radiogenomics, and habitat imaging, and examines the use of these newly emergent fields in assessing tumour heterogeneity and its implications. It reviews the potential value of radiomics and radiogenomics in assisting in the diagnosis of cancer disease and determining cancer aggressiveness. This review discusses how radiogenomic analysis can be further used to guide treatment therapy for individual tumours by predicting drug response and potential therapy resistance and examines its role in developing radiomics as biomarkers of oncological outcomes. Lastly, it provides an overview of the obstacles in these emergent fields today including reproducibility, need for validation, imaging analysis standardisation, data sharing and clinical translatability and offers potential solutions to these challenges towards the realisation of precision oncology.
PURPOSE Provide evidence- and expert-based recommendations for optimal use of imaging in advanced prostate cancer. Due to increases in research and utilization of novel imaging for advanced prostate cancer, this guideline is intended to outline techniques available and provide recommendations on appropriate use of imaging for specified patient subgroups. METHODS An Expert Panel was convened with members from ASCO and the Society of Abdominal Radiology, American College of Radiology, Society of Nuclear Medicine and Molecular Imaging, American Urological Association, American Society for Radiation Oncology, and Society of Urologic Oncology to conduct a systematic review of the literature and develop an evidence-based guideline on the optimal use of imaging for advanced prostate cancer. Representative index cases of various prostate cancer disease states are presented, including suspected high-risk disease, newly diagnosed treatment-naïve metastatic disease, suspected recurrent disease after local treatment, and progressive disease while undergoing systemic treatment. A systematic review of the literature from 2013 to August 2018 identified fully published English-language systematic reviews with or without meta-analyses, reports of rigorously conducted phase III randomized controlled trials that compared ≥ 2 imaging modalities, and noncomparative studies that reported on the efficacy of a single imaging modality. RESULTS A total of 35 studies met inclusion criteria and form the evidence base, including 17 systematic reviews with or without meta-analysis and 18 primary research articles. RECOMMENDATIONS One or more of these imaging modalities should be used for patients with advanced prostate cancer: conventional imaging (defined as computed tomography [CT], bone scan, and/or prostate magnetic resonance imaging [MRI]) and/or next-generation imaging (NGI), positron emission tomography [PET], PET/CT, PET/MRI, or whole-body MRI) according to the clinical scenario.
Human cancers represent complex structures, which display substantial inter-and intratumor heterogeneity in their genetic expression and phenotypic features. However, cancers usually exhibit characteristic structural, physiologic, and molecular features and display specific biological capabilities named hallmarks. Many of these tumor traits are imageable through different imaging techniques. Imaging is able to spatially map key cancer features and tumor heterogeneity improving tumor diagnosis, characterization, and management. This paper aims to summarize the current and emerging applications of imaging in tumor biology assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.