A complete bibliometric analysis of the Scopus database was performed to identify the research trends related to lignin valorization from 2000 to 2016. The results from this analysis revealed an exponentially increasing number of publications and a high relevance of interdisciplinary collaboration. The simultaneous valorization of the three main components of lignocellulosic biomass (cellulose, hemicellulose, and lignin) has been revealed as a key aspect and optimal pretreatment is required for the subsequent lignin valorization. Research covers the determination of the lignin structure, isolation, and characterization; depolymerization by thermal and thermochemical methods; chemical, biochemical and biological conversion of depolymerized lignin; and lignin applications. Most methods for lignin depolymerization are focused on the selective cleavage of the β-O-4 linkage. Although many depolymerization methods have been developed, depolymerization with sodium hydroxide is the dominant process at industrial scale. Oxidative conversion of lignin is the most used method for the chemical lignin upgrading. Lignin uses can be classified according to its structure into lignin-derived aromatic compounds, lignin-derived carbon materials and lignin-derived polymeric materials. There are many advances in all approaches, but lignin-derived polymeric materials appear as a promising option.
A wide variety of modifiers have been applied to bitumen in order to enhance their properties and performance. Among them, polymers have been mainly used. The aim of this paper is to assess the use of polyurethane foam waste as a bitumen modifier for hot mix asphalts. The polyurethane foam is a by-product of the manufacturing of polyurethane for thermal insulation. From a bitumen with a penetration grade of 50/70, various samples with percentages of waste material in weight ranging from 1% to 5% were produced and tested. Samples with 5% of waste material or more became rough and were refused due to their poor workability. A bituminous mixture with modified bitumen with a 4% of polyurethane was manufactured and compared with a sample with the same aggregates and original bitumen. Results in Marshall test showed that a mix with polymer modified bitumen yielded improvements in stability and a lower deformability. This result suggests that the employment of polyurethane foam waste is a promising bitumen modifier, contributing also to recycle waste materials.
Pavement performance models play a vital role in any pavement management system. The Regional Government of Biscay (RGB) (Spain) manages a 1200 km road network and conducts pavement data collections, including the International Roughness Index (IRI) values. The aim of the paper is to develop an IRI performance model for two-lane roads with flexible pavement until the first maintenance and/or rehabilitation activity is performed. Due to the huge amount of available information, a deterministic model was selected. A literature review of deterministic models showed that, apart from age and traffic volumes, the pavement structure is a key factor. Therefore, it was decided to analyze the only road stretches whose entire pavement section was known (surface layer + base + subbase). Various variables related to age, traffic volumes and employed materials were introduced as possible factors. The multiple linear regression model with the highest coefficient of determination and all the variables significant included the real pavement age, the cumulated heavy traffic and the total thickness of bituminous layers. As the material employed in the surface layer could affect roughness progression, a qualitative variable was introduced to consider various surface materials. The model improved its accuracy, indicating that the surface layer material is also an influencing factor on IRI evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.