Since 1988, a yellowing disease of melon, cucumber and zucchini squash has been frequently observed in summer and autumn crops in France. Infected plants show yellowing and thickening of the older leaves; symptom intensity differs depending upon cultivar and season, and can be easily overlooked when plants are already infected by mosaic‐inducing viruses or other pathogens. The disease is associated with the presence of a virus with spherical particles c. 25 nm in diameter, which is readily transmitted in a persistent manner by the aphids Myzus persicae and Aphis gossypii, but not mechanically. Serological analysis, nucleic‐acid‐hybridization experiments and host‐range studies indicate that the virus is distantly related to, but distinct from, beet western yellows virus (BWYV). We propose to name this virus cucurbit aphid‐borne yellows virus (CABYV), and to consider it as a tentative new member of the luteovirus group. CABYV was found to reduce significantly the yields of melon and cucumber by decreasing the number of fruit per plant but not by altering the fruit shape or quality. Preliminary investigations of the epidemiology of CABYV indicate that the virus is common in weeds and in cultivated cucurbits. CABYV was frequently detected in various regions of France, suggesting that it is one of the most prevalent viruses infecting cucurbits in this country.
The nucleotide sequence of the genomic RNA (5641 nt) of beet western yellow virus (BWYV) isolated from lettuce has been determined and its genetic organization deduced. The sequence of the 3'terminal 2208 nt of RNA of a second BWYV isolate, obtained from sugarbeet, was also determined and was found to be very similar but not identical to that of the lettuce isolate. The complete sequence of BWYV RNA contains six long open reading frames (ORFs). A cluster of three of these ORFs, including the coat protein cistron, display extensive amino acid sequence homology with corresponding ORFs of a second luteovirus, the PAV isolate of barley yellow dwarf virus (BYDV) (1,2). The ORF corresponding to the putative viral RNA-dependant RNA polymerase, on the other hand, resembles that of southern bean mosaic virus. There is circumstantial evidence that expression of the BWYV RNA polymerase ORF may involve a translational frameshift mechanism. The ORF immediately following the coat protein cistron may be translated by in-frame readthrough of the coat protein cistron amber termination codon. Similar mechanisms have been proposed for expression of the corresponding ORFs of BYDV(PAV) (1).
Big-vein disease occurs on lettuce worldwide in temperate conditions; the causal agent has been presumed to be Lettuce big-vein virus (LBVV), genus Varicosavirus, vectored by the soilborne fungus Olpidium brassicae. Recently, the role of LBVV in the etiology of big-vein disease has been questioned because a second soilborne virus, Mirafiori lettuce virus (MiLV), genus Ophiovirus, has been found frequently in big-vein-affected lettuce. LBVV and MiLV, detectable and distinguishable by enzyme-linked immunosorbent assay using specific antisera, were tested for their ability to be transmitted from lettuce to lettuce by mechanical inoculation of sap extracts, or by zoospores of O. brassicae, and to cause big-vein disease. Both viruses were mechanically transmissible from lettuce to herbaceous hosts and to lettuce, but very erratically. LBVV was transmitted by O. brassicae but lettuce infected with only this virus never showed symptoms. MiLV was transmitted in the same manner, and lettuce infected with this virus alone consistently developed big-vein symptoms regardless of the presence or absence of LBVV. With repeated mechanical transmission, isolates of both viruses appeared to lose the ability to be vectored, and MiLV appeared to lose the ability to cause big-vein symptoms. The recovery of MiLV (Mendocino isolate, from Cali-fornia) from stored O. brassicae resting spores puts the earliest directly demonstrable existence of MiLV at 1990.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.