In the present paper, we deal with a new continuous and compact embedding theorems for the fractional Orlicz-Sobolev spaces, also, we study the existence of infinitely many nontrivial solutions for a class of non-local fractional Orlicz-Sobolev Schrödinger equations whose simplest prototype isThe proof is based on the variant Fountain theorem established by Zou.
In this paper we are concerned with qualitative properties of entire solutions to a Schrödinger equation with sublinear nonlinearity and sign-changing potentials. Our analysis considers three distinct cases and we establish sufficient conditions for the existence of infinitely many solutions.
We consider the following nonlinear Schrödinger equationUsing variational methods, we prove the existence of two solutions with negative and positive energies, one of these solutions being nonnegative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.