Recent studies of obesity have provided new insights into the mechanisms underlying insulin resistance and metabolic dysregulation. Numerous efforts have been made to identify key regulators of obesity-linked adipose tissue inflammation and insulin resistance. We found that angiopoietin-like protein 2 (Angptl2) was secreted by adipose tissue and that its circulating level was closely related to adiposity, systemic insulin resistance, and inflammation in both mice and humans. Angptl2 activated an inflammatory cascade in endothelial cells via integrin signaling and induced chemotaxis of monocytes/macrophages. Constitutive Angptl2 activation in vivo induced inflammation of the vasculature characterized by abundant attachment of leukocytes to the vessel walls and increased permeability. Angptl2 deletion ameliorated adipose tissue inflammation and systemic insulin resistance in diet-induced obese mice. Conversely, Angptl2 overexpression in adipose tissue caused local inflammation and systemic insulin resistance in nonobese mice. Thus, Angptl2 is a key adipocyte-derived inflammatory mediator that links obesity to systemic insulin resistance.
Glucose-stimulated insulin secretion, glucose transport, glucose phosphorylation and glucose utilization have been characterized in the insulinoma cell line MIN6, which is derived from a transgenic mouse expressing the large T-antigen of SV40 in pancreatic beta cells. Glucose-stimulated insulin secretion occurred progressively from 5 mmol/l glucose, reached the maximal level approximately seven-fold above the basal level at 25 mmol/l, and remained at this level up to 50 mmol/l. Glucose transport was very rapid with the half-maximal uptake of 3-O-methyl-D-glucose being reached within 15 s at 22 degrees C. Glucose phosphorylating activity in the cell homogenate was due mainly to glucokinase; the Vmax value of glucokinase activity was estimated to be 255 +/- 37 nmol.h-1.mg protein-1, constituting approximately 80% of total phosphorylating activity, whereas hexokinase activity constituted less than 20%. MIN6 cells exhibited mainly the high Km component of glucose utilization with a Vmax of 289 +/- 18 nmol.h-1.mg protein-1. Thus, glucose utilization quantitatively and qualitatively reflected glucose phosphorylation in MIN6 cells. In contrast, MIN7 cells, which exhibited only a small increase in insulin secretion in response to glucose, had 4.7-fold greater hexokinase activity than MIN6 cells with a comparable activity of glucokinase. These characteristics of MIN6 cells are very similar to those of isolated islets, indicating that this cell line is an appropriate model for studying the mechanism of glucose-stimulated insulin secretion in pancreatic beta cells.
To examine the role of mitogen-activated protein kinase and nuclear factor kappa B (NF-κB) pathways on osteoclast survival and activation, we constructed adenovirus vectors carrying various mutants of signaling molecules: dominant negative Ras (RasDN), constitutively active MEK1 (MEKCA), dominant negative IκB kinase 2 (IKKDN), and constitutively active IKK2 (IKKCA). Inhibiting ERK activity by RasDN overexpression rapidly induced the apoptosis of osteoclast-like cells (OCLs) formed in vitro, whereas ERK activation after the introduction of MEKCA remarkably lengthened their survival by preventing spontaneous apoptosis. Neither inhibition nor activation of ERK affected the bone-resorbing activity of OCLs. Inhibition of NF-κB pathway with IKKDN virus suppressed the pit-forming activity of OCLs and NF-κB activation by IKKCA expression upregulated it without affecting their survival. Interleukin 1α (IL-1α) strongly induced ERK activation as well as NF-κB activation. RasDN virus partially inhibited ERK activation, and OCL survival promoted by IL-1α. Inhibiting NF-κB activation by IKKDN virus significantly suppressed the pit-forming activity enhanced by IL-1α. These results indicate that ERK and NF-κB regulate different aspects of osteoclast activation: ERK is responsible for osteoclast survival, whereas NF-κB regulates osteoclast activation for bone resorption.
Wolfram syndrome, an autosomal recessive disorder characterized by juvenile-onset diabetes mellitus and optic atrophy, is caused by mutations in the WFS1 gene. In order to gain insight into the pathophysiology of this disease, we disrupted the wfs1 gene in mice. The mutant mice developed glucose intolerance or overt diabetes due to insufficient insulin secretion in vivo. Islets isolated from mutant mice exhibited a decrease in insulin secretion in response to glucose. The defective insulin secretion was accompanied by reduced cellular calcium responses to the secretagogue. Immunohistochemical analyses with morphometry and measurement of whole-pancreas insulin content demonstrated progressive beta-cell loss in mutant mice, while the alpha-cell, which barely expresses WFS1 protein, was preserved. Furthermore, isolated islets from mutant mice exhibited increased apoptosis, as assessed by DNA fragment formation, at high concentration of glucose or with exposure to endoplasmic reticulum-stress inducers. These results strongly suggest that WFS1 protein plays an important role in both stimulus-secretion coupling for insulin exocytosis and maintenance of beta-cell mass, deterioration of which leads to impaired glucose homeostasis. These WFS1 mutant mice provide a valuable tool for understanding better the pathophysiology of Wolfram syndrome as well as WFS1 function.
Wolfram syndrome, an autosomal recessive disorder associated with diabetes mellitus and optic atrophy, is caused by mutations in the WFS1 gene encoding an endoplasmic reticulum (ER) membrane protein. Herein, we report that pancreatic islets of wfs1-deficient mice exhibit increases in phosphorylation of RNA-dependent protein kinase-like ER kinase, chaperone gene expressions and active XBP1 protein levels, indicating an enhanced ER stress response. We established wfs1-deficient MIN6 clonal beta-cells by crossing wfs1-deficient mice with mice expressing simian virus 40 large T antigen in beta-cells. These cells show essentially the same alterations in ER stress responses as wfs1-deficient islets, which were reversed by re-expression of WFS1 protein or overexpression of GRP78, a master regulator of the ER stress response. In contrast, these changes are not observed in heart, skeletal muscle or brown adipose tissues with WFS1-deficiency. The increased ER stress response was accompanied by reduced BrdU incorporation and increased caspase-3 cleavage, indicating impaired cell cycle progression and accelerated apoptotic processes in the mutant islets. These changes are associated with increased expression of the cell cycle regulator p21(CIP1) in wfs1-deficient islets and clonal beta-cells. Treatment of islets with thapsigargin, an ER stress inducer, caused upregulation of p21(CIP1). In addition, forced expression of p21(CIP1) resulted in reduced MIN6 beta-cell numbers, suggesting the ER stress-induced increase in p21(CIP1) expression to be involved in beta-cell loss in the mutant islets. These data indicate that WFS1-deficiency activates the ER stress response specifically in beta-cells, causing beta-cell loss through impaired cell cycle progression and increased apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.