A novel micromachined silicon displacement sensor based on the conduction of heat between two surfaces through the ambient air is described. A displacement resolution of less than 1 nm and a dynamic range of more than 100 µm was achieved in a 10 kHz bandwidth. To minimize drift, the sensors are operated in pairs, using a differential measurement configuration. The power consumption of these devices is on the order of 10 mW per sensor, and the measured time response is described by a simple exponential with a time constant of approximately 100 µs.
Polycrystalline silicon (p-Si) thin film transistors (TFTs) were fabricated using a high temperature process that included solid phase crystallization (SPC) and dry thermal oxidation with excimer laser annealing (ELA). Raman spectroscopy, X-ray diffraction and transmission electron microscopy analyses showed that the ELA process improved the quality of p-Si films markedly. The p-Si TFTs exhibited higher performance than the SPC p-Si TFTs. The field effect mobility for n-type self-aligned TFT was 251cm 2 ·V -1 ·s -1 . The longitudinal junction diffusion length of the p-Si TFTs was shorter than that of the SPC p-Si TFTs. This is favorable for fine design rules. If optimization of amorphous silicon (a-Si) deposition and SPC conditions enables the grains of p-Si films to grow larger than the channel length and the positions of the grain boundaries are controlled, this process will produce great scaling rule merits such as singlegrain Si TFTs. This fabrication process is consistent with the high temperature p-Si TFT development trend towards using large substrates, low temperatures, and fine design rules. High temperature p-Si TFTs are expected to be used in LSI circuits as silicon-on-insulator (SOI) devices in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.