CLP1 is the first discovered mammalian RNA kinase. However, its in vivo function has been entirely elusive. We have generated kinase-dead Clp1 (Clp1K/K) mice which exhibit a progressive loss of spinal motor neurons associated with axonal degeneration in peripheral nerves, denervation of neuromuscular junctions, and results in impaired motor function, muscle weakness, paralysis and fatal respiratory failure. Transgenic rescue experiments show that CLP1 functions in motor neurons. Mechanistically, loss of CLP1 activity results in accumulation of an entirely novel set of small RNA fragments, derived from aberrant processing of tyrosine pre-tRNA. These tRNA fragments sensitize cells to oxidative stress-induced p53 activation and p53-dependent cell death. Genetic inactivation of p53 rescues Clp1K/K mice from the motor neuron loss, muscle denervation and respiratory failure. Our experiments uncover a mechanistic link between tRNA processing, formation of a new RNA species and progressive loss of lower motor neurons regulated by p53.
We investigated expression profiles of microRNA (miRNA) in renal cell carcinoma [clear cell carcinomas (CCC) and chromophobe renal cell carcinomas (ChCC)] and in normal kidneys by using a miRNA microarray platform which covers a total of 470 human miRNAs (Sanger miRBase release 9.1). Unsupervised hierarchical cluster analysis revealed that CCC and ChCC were separable and that no subgroups were identified in CCCs. We found that 43 miRNAs were differentially expressed between CCC and normal kidney, of which 37 were significantly down-regulated in CCC and the other 6 were up-regulated. We also found that 57 miRNAs were differentially expressed between ChCC and normal kidney, of which 51 were significantly down-regulated in ChCC and the other 6 were up-regulated. Together, these observations indicate that expression of miRNAs tends to be down-regulated in both CCC and ChCC compared with normal kidney. We observed that miR-141 and miR-200c were the most significantly down-regulated miRNAs in CCCs. Indeed, in all cases of CCC analysed, both miR-141 and miR-200c were down-regulated in comparison with normal kidney. Microarray data and quantitative RT-PCR showed that these two miRNAs were expressed concordantly. TargetScan algorithm revealed that ZFHX1B mRNA is a hypothetical target of both miR-141 and -200c. We established by quantitative RT-PCR that, in CCCs in which miR-141 and miR-200c were down-regulated, ZFHX1B, a transcriptional repressor for CDH1/E-cadherin, tended to be up-regulated. Furthermore, we found that overexpression of miR-141 and miR-200c caused down-regulation of ZFHX1B and up-regulation of E-cadherin in two renal carcinoma cell lines, ACHN and 786-O. On the basis of these findings, we suggest that down-regulation of miR-141 and miR-200c in CCCs might be involved in suppression of CDH1/E-cadherin transcription via up-regulation of ZFHX1B.
Suppressor of cytokine signaling-1 (SOCS1/JAB) negatively regulates not only the cytokine-signaling pathway but also lipopolysaccharide (LPS)-induced macrophage activation. We found that SOCS1-deficient dendritic cells (DCs) were also hyperresponsive to interferon-gamma and interleukin-4. To define the role of SOCS1-deficient DCs in vivo, we generated mice in which the SOCS1 expression was restored in T and B cells on a SOCS1(-/-) background. In these mice, DCs were accumulated in the thymus and spleen and produced high levels of BAFF/BLyS and APRIL, resulting in the aberrant expansion of B cells and autoreactive antibody production. SOCS1-deficient DCs efficiently stimulated B cell proliferation in vitro and autoantibody production in vivo. These results indicate that SOCS1 plays an essential role in the normal DC functions and suppression of systemic autoimmunity.
Receptor-activator of NF-kappaB ligand (TNFSF11, also known as RANKL, OPGL, TRANCE and ODF) and its tumour necrosis factor (TNF)-family receptor RANK are essential regulators of bone remodelling, lymph node organogenesis and formation of a lactating mammary gland. RANKL and RANK are also expressed in the central nervous system. However, the functional relevance of RANKL/RANK in the brain was entirely unknown. Here we report that RANKL and RANK have an essential role in the brain. In both mice and rats, central RANKL injections trigger severe fever. Using tissue-specific Nestin-Cre and GFAP-Cre rank(floxed) deleter mice, the function of RANK in the fever response was genetically mapped to astrocytes. Importantly, Nestin-Cre and GFAP-Cre rank(floxed) deleter mice are resistant to lipopolysaccharide-induced fever as well as fever in response to the key inflammatory cytokines IL-1beta and TNFalpha. Mechanistically, RANKL activates brain regions involved in thermoregulation and induces fever via the COX2-PGE(2)/EP3R pathway. Moreover, female Nestin-Cre and GFAP-Cre rank(floxed) mice exhibit increased basal body temperatures, suggesting that RANKL and RANK control thermoregulation during normal female physiology. We also show that two children with RANK mutations exhibit impaired fever during pneumonia. These data identify an entirely novel and unexpected function for the key osteoclast differentiation factors RANKL/RANK in female thermoregulation and the central fever response in inflammation.
Approximately 20% of human cancers are estimated to develop from chronic inflammation. Recently, the NF-κB pathway was shown to play an essential role in promoting inflammation-associated cancer, but the role of the JAK/STAT pathway, another important signaling pathway of proinflammatory cytokines, remains to be investigated. Suppressor of cytokine signaling-1 (SOCS1) acts as an important physiological regulator of cytokine responses, and silencing of the SOCS1 gene by DNA methylation has been found in several human cancers. Here, we demonstrated that SOCS1-deficient mice (SOCS1−/−Tg mice), in which SOCS1 expression was restored in T and B cells on a SOCS1−/− background, spontaneously developed colorectal carcinomas carrying nuclear β-catenin accumulation and p53 mutations at 6 months of age. However, interferon (IFN)γ−/−SOCS1−/− mice and SOCS1−/−Tg mice treated with anti-IFNγ antibody did not develop such tumors. STAT3 and NF-κB activation was evident in SOCS1−/−Tg mice, but these were not sufficient for tumor development because these are also activated in IFNγ−/−SOCS1−/− mice. However, colons of SOCS1−/−Tg mice, but not IFNγ−/−SOCS1−/− mice, showed hyperactivation of STAT1, which resulted in the induction of carcinogenesis-related enzymes, cyclooxygenase-2 and inducible nitric oxide synthase. These data strongly suggest that SOCS1 is a unique antioncogene which prevents chronic inflammation-mediated carcinogenesis by regulation of the IFNγ/STAT1 pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.