It is widely accepted that green plants evolved the capacity to synthesize the highly organized branched alpha-polyglucan amylopectin with tandem-cluster structure, whereas animals and bacteria continued to produce random branched glycogen. Although most previous studies documented that cyanobacteria accumulate glycogen, the present study shows explicitly that some cyanobacteria such as Cyanobacterium sp. MBIC10216, Myxosarcina burmensis and Synechococcus sp. BG043511 had distinct alpha-polyglucans, which were designated as semi-amylopectin. The semi-amylopectin was intermediate between rice amylopectin and typical cyanobacterial glycogen in terms of chain length distribution, molecular size and length of the most abundant alpha-1,4-chain. It was also found that Cyanobacterium sp. MBIC10216 had no amylose-type component in its alpha-polyglucans. The evolutionary aspect of the structure of alpha-polyglucan is discussed in relation to the phylogenetic evolutionary tree of 16S rRNA sequences of cyanobacteria.
Coraliomargarita akajimensis gen. nov., sp. nov., a novel member of the phylum 'Verrucomicrobia' isolated from seawater in Japan An obligately aerobic, Gram-negative, non-spore-forming, non-motile, spherical bacterium, designated strain 04OKA010-24
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.