One of the ubiquitous features of real-life turbulent flows is the existence and persistence of coherent vortices. Here we show that such coherent vortices can be extracted as clusters of Lagrangian trajectories. We carry out the clustering on a weighted graph, with the weights measuring pairwise distances of fluid trajectories in the extended phase space of positions and time. We then extract coherent vortices from the graph using tools from spectral graph theory. Our method locates all coherent vortices in the flow simultaneously, thereby showing high potential for automated vortex tracking. We illustrate the performance of this technique by identifying coherent Lagrangian vortices in several two- and three-dimensional flows.
Questions of how the nature of a reaction coordinate that dominates the reaction ceases to exist and whether some new features emerge as an increase of total energy of systems are investigated for many degrees of freedom Hamiltonian systems. As a model system, a hydrogen atom in crossed electric and magnetic fields is scrutinized. It is shown that, when the total energy increases, the reaction coordinate no longer dominates the reaction as did at the lower energies. In turn, a new reaction coordinate emerges, connecting totally different reactant and product states. Furthermore, depending on which parts of the phase space the system traverses through the saddle, the system nonuniformly experiences the switching of the reaction coordinate leading to the different product state. The universal mechanism of the cessation and the switching of the reaction coordinate at high energy regimes above the saddle is investigated.
The fungal metabolism of 4-nitrophenol (4-NP) was investigated using the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Despite its phenolic feature, 4-NP was not oxidized by extracellular ligninolytic peroxidases. However, 4-NP was converted to 1,2-dimethoxy-4-nitrobenzene via intermediate formation of 4-nitroanisole by the fungus only under ligninolytic conditions. The metabolism proceeded via hydroxylation of the aromatic ring and methylation of phenolic hydroxyl groups. Although the involvement of nitroreductase in the metabolism of 2,4-dinitrotoluene by many aerobic and anaerobic microorganisms including P. chrysosporium has been reported, no formation of 4-aminophenol was observed during 4-NP metabolism. The formation of 1,2-dimethoxy-4-nitrobenzene was effectively inhibited by exogenously added piperonyl butoxide, a cytochrome P450 inhibitor, suggesting that cytochrome P450 is involved in the hydroxylation reaction. Thus, P. chrysosporium seems to utilize hydroxylation and methylation reactions to produce a more susceptible structure for an oxidative metabolic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.