Transfer of nitrogen fixation ability to plants, especially crops, is a promising approach to mitigate dependence on chemical nitrogen fertilizer and alleviate environmental pollution caused by nitrogen fertilizer run-off. However, the need to transfer a large number of nitrogen fixation (nif) genes and the extreme vulnerability of nitrogenase to oxygen constitute major obstacles for transfer of nitrogen-fixing ability to plants. Here we demonstrate functional expression of a cyanobacterial nitrogenase in the non-diazotrophic cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803). A 20.8-kb chromosomal fragment containing 25 nif and nif-related genes of the diazotrophic cyanobacterium Leptolyngbya boryana was integrated into a neutral genome site of Synechocystis 6803 by five-step homologous recombination together with the cnfR gene encoding the transcriptional activator of the nif genes to isolate CN1. In addition, two other transformants CN2 and CN3 carrying additional one and four genes, respectively, were isolated from CN1. Low but significant nitrogenase activity was detected in all transformants. This is the first example of nitrogenase activity detected in non-diazotrophic photosynthetic organisms. These strains provide valuable platforms to investigate unknown factors that enable nitrogen-fixing growth of non-diazotrophic photosynthetic organisms, including plants.
Since nitrogenase is extremely vulnerable to oxygen, aerobic or micro-aerobic nitrogen-fixing organisms need to create anaerobic microenvironments in the cells for diazotrophic growth, which would be one of the major barriers to express active nitrogenase in plants in efforts to create nitrogen-fixing plants. Numerous cyanobacteria are able to fix nitrogen with nitrogenase by coping with the endogenous oxygen production by photosynthesis. Understanding of the molecular mechanisms enabling to the coexistence of nitrogen fixation and photosynthesis in nonheterocystous cyanobacteria could offer valuable insights for the transfer of nitrogen fixation capacity into plants. We previously identified the cnfR gene encoding the master regulator for the nitrogen fixation (nif) gene cluster in the genome of a nonheterocystous cyanobacterium Leptolyngbya boryana, in addition to initial characterization of the nif gene cluster. Here we isolated nine mutants, in which the nif and nif-related genes were individually knocked out in L. boryana to investigate the individual functions of (1) accessory proteins (NifW, NifX/NafY, and NifZ) in the biosynthesis of nitrogenase metallocenters, (2) serine acetyltransferase (NifP) in cysteine supply for iron-sulfur clusters, (3) pyruvate formate lyase in anaerobic metabolism, and (4) NifT and HesAB proteins. ΔnifW, ΔnifXnafY, and ΔnifZ exhibited the most severe phenotype characterized by low nitrogenase activity (<10%) and loss of diazotrophic growth ability. The phenotypes of ΔnifX, ΔnafY, and ΔnifXnafY suggested that the functions of the homologous proteins NifX and NafY partially overlap. ΔnifP exhibited significantly slower diazotrophic growth than the wild type, with lower nitrogenase activity (22%). The other four mutants (ΔpflB, ΔnifT, ΔhesA, and ΔhesB) grew diazotrophically similar to the wild type. Western blot analysis revealed a high correlation between nitrogenase activity and NifD contents, suggesting that NifD is more susceptible to proteolytic degradation than NifK in L. boryana. The phenotype of the mutants lacking the accessory proteins was more severe than that observed in heterotrophic bacteria such as Azotobacter vinelandii, which suggests that the functions of NifW, NifX/NafY, and NifZ are critical for diazotrophic growth of oxygenic photosynthetic cells. L. boryana provides a promising model for studying the molecular mechanisms that produce active nitrogenase, to facilitate the creation of nitrogen-fixing plants.
Leptolyngbya boryana (L. boryana) (formerly Plectonema boryanum) is a versatile, filamentous cyanobacterium that has the ability to fix nitrogen under microoxic conditions and to grow heterotrophically with glucose in the dark, providing an excellent system to investigate photosynthesis, nitrogen fixation, and their regulatory mechanisms. While L. boryana is not naturally transformable different from the unicellular cyanobacterium Synechocystis sp. PCC 6803, it can be transformed by electroporation. Here we describe the transformation of L.boryana by electroporation to isolate mutants in which a targeted gene is disrupted. Materials and Reagents1. Bottle top filter system (0.22 µm) (Corning, catalog number: 430624) 2. Microcentrifuge tubes (1.5 ml) (Ina-optika corporation, BIO-BIK, catalog number: ST-0150F) or its equivalent, sterilized by autoclave (121 ºC, 20 min) 3. Micropipettes tips (121 ºC, 20 min) 4. Sterile syringe filter (Millex-GV Syringe Filter Unit, 0.22 µm), used for filter sterilization of solutions of antibiotics and glucose (Thermo Fisher Scientific, Millipore, catalog number: SLGV033RV) or its equivalent 5. Petri dish [sterile Petri dishes (90 mm x 15 mm)] (ASONE Corporation, catalog number: 1-7484-01-30) or its equivalent 6. Pulse cuvettes (Gene Pulser cuvette, 0.1 cm) (Bio-Rad Laboratories, AbD Serotec ® , catalog number: 1652089) 7. Hybond N+ filter (disc 82 mm diameter) (GE Healthcare, Amersham, catalog number: RPN82B), sterilized by autoclave (121 ºC, 20 min). 8. Leptolyngbya boryana (wild type or dg5) (grown on a BG-11 agar plate supplemented with 20 mM HEPES-KOH, pH 7.5 and 30 mM glucose)Note: The dg5 strain was isolated from the wild type as a natural mutant that grows much faster heterotrophically in the dark than wild type (Fujita et al., 1996). Recently we identified that the mutation responsible for the dg5 phenotype is one adenine insertion causing a frameshift in the cytM gene encoding cytochrome cM (Hiraide et al., 2015).
The influence of damage by the southern green stink bug, Nezara viridula (Linnaeus) (Heteroptera: Pentatomidae), on the yield and oil quality of sesame seeds and the seasonal prevalence of the bug were investigated in field experiments. When ten bugs per plant were released individually onto sesame plants during the ripening period, many immature seeds were observed at harvest, and the seed weight of infested plants was lower than that of the control. The acid value of the oil in sesame seeds damaged by bugs in the mid-ripening period tended to be higher than that of plants infested in the late ripening period. In sesame fields, second-generation nymphs appeared in the early ripening period, and the bugs seemed to reproduce and increase rapidly in the late ripening period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.