Bcl-2 family proteins play a central role in regulating apoptosis. We previously reported that human Bcl-rambo, also termed BCL2L13, localized to mitochondria and induced apoptosis when overexpressed in human embryonic kidney 293T cells. However, the physiological function of Bcl-rambo currently remains unclear. In the present study, human Bcl-rambo was ectopically expressed in Drosophila melanogaster. Bcl-rambo mainly localized to the mitochondria of Drosophila Schneider 2 (S2) cells. The overexpression of Bcl-rambo, but not Bcl-rambo lacking a C-terminal transmembrane domain, induced apoptosis in S2 cells. Moreover, the ectopic expression of Bcl-rambo by a GAL4-UAS system induced aberrant morphological changes characterized by atrophied wing, split thorax, and rough eye phenotypes. Bcl-rambo induced the activation of effector caspases in eye imaginal discs. The rough eye phenotype induced by Bcl-rambo was partly rescued by the co-expression of p35, Diap1, and Diap2. By using this Drosophila model, we showed that human Bcl-rambo interacted genetically with Drosophila homologues of adenine nucleotide translocators and the autophagy-related 8 protein. The results of the present study demonstrated that human Bcl-rambo localized to mitochondria and at least regulated an apoptosis signaling pathway in Drosophila.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.