Abstract:With the development of Industry 4.0 and the emergence of the smart factory concept, the traditional philosophy of manufacturing systems will change. The smart factory introduces changes to the factors and elements of traditional manufacturing systems and incorporates the current requirements of smart systems so that it can compete in the future. An increasing amount of research in both academia and industry is dedicated to transitioning the concept of the smart factory from theory to practice. The purpose of the current research is to highlight the perspectives that shape the smart factory and to suggest approaches and technical support to enable the realization of those perspectives. This paper fills this gap by identifying and analyzing research on smart factories.We suggest a framework to analyze existing research and investigate the elements and features of smart factory systems.
The emergence of Industry 4.0, also referred to as the fourth industrial revolution, has entirely transformed how the industry or business functions and evolves. It can be attributed to its broadening focus on automation, decentralization, system integration, cyber-physical systems, etc. Its implementation promises numerous benefits in terms of higher productivity, greater volatility, better control and streamlining of processes, accelerated enterprise growth, sustainable development, etc. Despite the worldwide recognition and realization of Industry 4.0, its holistic adoption is constrained by the requirements of specific skills among the workforce. The personnel are expected to acquire adaptive thinking, cognitive and computational skills, predominantly in the area of information technology, data analytics, etc. Thus, the universities that laid the foundation for future talents or trends in society have to adapt and modernize the existing programs, facilities, and infrastructure. This reshaping of higher education in consonance with the vision of Industry 4.0 possesses its opportunities and challenges. There are, of course, a multitude of factors involved and they need a reasonable assessment to strategically plan this metamorphosis. Therefore, this work aims to explore and analyze the different factors that influence the progression and enactment of Industry 4.0 in universities for sustainable education. For this purpose, a systematic approach based on a questionnaire as well as a SWOT (strengths (S), weaknesses (W), opportunities (O), and threats (T)) integrated with the analytic hierarchy process (AHP) is adopted. The questionnaires are administered to university employees and students (or stakeholders) to assess their viewpoint, as well as to estimate the priority values for individual factors to be included in SWOT. The AHP is implemented to quantify the different factors in terms of weights using a pairwise comparison matrix. Finally, the SWOT matrix is established depending on the questionnaire assessment and the AHP weights to figure out stakeholders’ perspectives, in addition to the needed strategic scheme. The SWOT implementation of this research proposes an aggressive approach for universities, where they must make full use of their strengths to take advantage of the emerging opportunities in Industry 4.0. The results also indicate that there are fundamental requirements for universities in Industry 4.0, including effective financial planning, skilled staff, increased industrial partnerships, advanced infrastructure, revised curricula, and insightful workshops. This investigation undoubtedly underlines the importance of practical expertise and the implementation of digital technologies at the university level to empower novices with the requisite skills and a competitive advantage for Industry 4.0.
Many advanced product manufacturing approaches have been introduced in the market in recent years. Thus, it is critical to develop modern techniques which can effectively familiarize budding minds with the latest manufacturing procedures. In fact, the contemporary training methods and advanced education practices are crucial to uphold the interest of the new generation as well as to equip them with state-of the art systems. There is a need for innovative ideas and effective methodologies to inculcate the desired competency and prepare students for prospective manufacturing set ups. In the latest Industry 4.0 paradigm, visualization technologies, especially virtual reality, have been emphasized to sustainably train and educate young students. This work presents a technique for utilizing the leading visualization method based on virtual reality in product manufacturing. It aims to acquaint students with the prominent concept of Industry 4.0, the reconfigurable manufacturing system (RMS). The RMS has been a demanding topic for the novice and, most often, amateurs are not able to grasp and interpret it. Therefore, this paper outlines the various steps that can be useful for students in order to anticipate the RMS design, interact with it, understand its operation, and evaluate its performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.