The steric bulk of the well‐known DIPPBDI ligand (CH[C(CH3)N‐DIPP]2, DIPP=2,6‐diisopropylphenyl) was increased by replacing isopropyl for isopentyl groups. This very bulky DIPePBDI ligand could not stabilize the radical species (DIPePBDI)Mg.: reduction of (DIPePBDI)MgI with Na gave (DIPePBDI)2Mg2 with a rather long Mg‐Mg bond of 3.0513(8) Å. Addition of TMEDA prior to reduction gave complex (DIPePBDI)2Mg2(C6H6), which could also be obtained as its THF adduct. It is speculated that combination of a bulky spectator ligand and TMEDA prevents dimerization of the intermediate MgI radical, which then reacts with the benzene solvent. Complex (DIPePBDI)2Mg2(C6H6), which formally contains the anti‐aromatic anion C6H62−, reacted with tBuOH as a Brønsted base to 1,3‐ and 1,4‐cyclohexadiene and with H2 as a two electron donor to (DIPePBDI)2Mg2H2 and C6H6. It also reductively cleaved the C−F bond in fluorobenzene and gave (DIPePBDI)MgPh, (DIPePBDI)MgF, and C6H6.
Key to the isolation of the first alkyl strontium complex was the synthesis of a strontium hydride complex that is stable towards ligand exchange reactions. This goal was achieved by using the super bulky β‐diketiminate ligand DIPePBDI (CH[C(Me)N‐DIPeP]2, DIPeP=2,6‐diisopentylphenyl). Reaction of DIPePBDI‐H with Sr[N(SiMe3)2]2 gave (DIPePBDI)SrN(SiMe3)2, which was converted with PhSiH3 into [(DIPePBDI)SrH]2. Dissolved in C6D6, the strontium hydride complex is stable up to 70 °C. At 60 °C, H–D isotope exchange gave full conversion into [(DIPePBDI)SrD]2 and C6D5H. Since H–D exchange with D2 is facile, the strontium hydride complex served as a catalyst for the deuteration of C6H6 by D2. Reaction of [(DIPePBDI)SrH]2 with ethylene gave [(DIPePBDI)SrEt]2. The high reactivity of this alkyl strontium complex is demonstrated by facile ethylene polymerization and nucleophilic aromatic substitution with C6D6, giving alkylated aromatic products and [(DIPePBDI)SrD]2.
W ith molecular hydrogen being one of the cleanest reducing agents, catalytic hydrogenation using the more noble transition metals is among the most studied of all chemical processes 1 . Increasing social pressure towards a sustainable society, however, dictates replacement of costly, and often harmful, precious metals by more abundant first-row transition metals or even biocompatible redox inactive main group metals [2][3][4][5][6] . The alkaline earth metal calcium does not possess partially filled d orbitals for substrate activation, but has recently shown catalytic activities in the hydrogenation of C= C double bonds with molecular H 2 (ref. 7 ). Although restricted to conjugated C= C bonds, this example strikingly broke the dogma that transition metals are needed for alkene hydrogenation. This was followed by the development of metal-free frustrated Lewis pair (FLP) catalysts [8][9][10][11] and, most recently, cationic calcium hydride catalysts that are also able to hydrogenate unactivated alkenes 12 . Figure 1a shows a working hypothesis for styrene hydrogenation with a dibenzylcalcium catalyst (CaBn 2 ) 7 . The first step is the generation of a calcium hydride species, for which ample precedence exists [13][14][15][16][17] . Further reaction with H 2 may cause precipitation of insoluble (CaH 2 ) n , but catalyst loss is partly prevented by aggregation to soluble but undefined Ca x Bn y H z species. Despite a lack of d orbitals, alkene activation proceeds through a weak electrostatic calciumalkene interaction, recently shown to be of importance in calcium catalysis 18 . The benzylic calcium intermediate formed after insertion may, after successive styrene insertions, form polystyrene 19 , but high H 2 pressure (20-100 bar) can prevent this side reaction by promoting σ-bond metathesis. The latter step in the cycle is, like the initiation reaction, formally a deprotonation of H 2 by a resonance-stabilized benzylic carbanion. Considering the high pK a of H 2 (≈ 49) 20 , this reaction seemed questionable. Stoichiometric conversions of model systems, however, underscored the feasibility of this pathway 7 . Independent theoretical calculations illustrate that the final σ-bond metathesis step is indeed highly endergonic: Gibbs free energy of activation Δ G ‡ (60 °C, 20 bar) = 25.7 kcal mol −1 (ref. 21 ).As the highly atom-efficient catalytic reduction of imines by H 2 received much less attention than alkene or ketone hydrogenation [22][23][24] , it remained an important question whether calcium-catalysed hydrogenation can be extended to imine reduction. Current stateof-the-art imine hydrogenation catalysts can be divided into four categories that vary in terms of substrate activation and nucleophilic power ( Fig. 2a-d). Figure 2a shows organometallic metal hydrides that rely on hydride nucleophilicity. Apart from few early transition metal catalysts (Ti 25 , lanthanides 26 ), these are generally based on late transition metals (Rh, Ir) 22 . The aluminium hydride compound (iso-butyl) 2 AlH is an odd example of a ...
Cationic Lewis base-free β-diketiminate (BDI) complexes of Mg and Ca have been isolated as their B(CF) salts. The cation (BDI)Mg shows an extraordinarily strong Lewis acidity that can compete with strong Lewis acids like B(CF) and (BDI)AlMe. Its highly electrophilic nature is exemplified by isolation of an 3-hexyne adduct.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.