Iron pyrite (FeS2) is considered a promising earth-abundant semiconductor for solar energy conversion with the potential to achieve terawatt-scale deployment. However, despite extensive efforts and progress, the solar conversion efficiency of iron pyrite remains below 3%, primarily due to a low open circuit voltage (VOC). Here we report a comprehensive investigation on {100}-faceted n-type iron pyrite single crystals to understand its puzzling low VOC. We utilized electrical transport, optical spectroscopy, surface photovoltage, photoelectrochemical measurements in aqueous and acetonitrile electrolytes, UV and X-ray photoelectron spectroscopy, and Kelvin force microscopy to characterize the bulk and surface defect states and their influence on the semiconducting properties and solar conversion efficiency of iron pyrite single crystals. These insights were used to develop a circuit model analysis for the electrochemical impedance spectroscopy that allowed a complete characterization of the bulk and surface defect states and the construction of a detailed energy band diagram for iron pyrite crystals. A holistic evaluation revealed that the high-density of intrinsic surface states cannot satisfactorily explain the low photovoltage; instead, the ionization of high-density bulk deep donor states, likely resulting from bulk sulfur vacancies, creates a nonconstant charge distribution and a very narrow surface space charge region that limits the total barrier height, thus satisfactorily explaining the limited photovoltage and poor photoconversion efficiency of iron pyrite single crystals. These findings lead to suggestions to improve single crystal pyrite and nanocrystalline or polycrystalline pyrite films for successful solar applications.
Many solid tumors contain an overabundance of phospholipid ethers relative to normal cells. Capitalizing on this difference, we created cancer-targeted alkylphosphocholine (APC) analogs through structure-activity analyses. Depending on the iodine isotope used, radioiodinated APC analog CLR1404 was used as either a positron emission tomography (PET) imaging (124I) or molecular radiotherapeutic (131I) agent. CLR1404 analogs displayed prolonged tumor-selective retention in 55 in vivo rodent and human cancer and cancer stem cell models. 131I-CLR1404 also displayed efficacy (tumor growth suppression and survival extension) in a wide range of human tumor xenograft models. Human PET/CT (computed tomography) and SPECT (single-photon emission computed tomography)/CT imaging in advanced-cancer patients with 124I-CLR1404 or 131I-CLR1404, respectively, demonstrated selective uptake and prolonged retention in both primary and metastatic malignant tumors. Combined application of these chemically identical APC-based radioisosteres will enable personalized dual modality cancer therapy of using molecular 124I-CLR1404 tumor imaging for planning 131I-CLR1404 therapy.
OBJECTIVE To compare the effect of simulator functional fidelity (manikin vs a Dynamic Haptic Robotic Trainer [DHRT]) and personalized feedback on surgical resident self-efficacy and self-ratings of performance during ultrasound-guided internal jugular central venous catheterization (IJ CVC) training. In addition, we seek to explore how self-ratings of performance compare to objective performance scores generated by the DHRT system. DESIGN Participants were randomly assigned to either manikin or DHRT IJ CVC training over a 6-month period. Self-efficacy surveys were distributed before and following training. Training consisted of a pretest, 22 practice IJ CVC needle insertion attempts, 2 full-line practice attempts, and a posttest. Participants provided self-ratings of performance for each needle insertion and were presented with feedback from either an upper level resident (manikin) or a personalized learning system (DHRT). SETTING A study was conducted from July 2016 to February 2017 through a surgical skills training program at Hershey Medical Center in Hershey, Pennsylvania. PARTICIPANTS Twenty-six first-year surgical residents were recruited for the study. Individuals were informed that IJ CVC training procedures would be consistent regardless of participation in the study and that participation was optional. All recruited residents opted to participate in the study. RESULTS Residents in both groups significantly improved their self-efficacy scores from pretest to posttest (p < 0.01). Residents in the manikin group consistently provided higher self-ratings of performance (p < 0.001). Residents in the DHRT group recorded more feedback on errors (228 instances) than the manikin group (144 instances). Self-ratings of performance on the DHRT system were able to significantly predict the objective score of the DHRT system (R2 = 0.223, p < 0.001). CONCLUSION Simulation training with the DHRT system and the personalized learning feedback can improve resident self-efficacy with IJ CVC procedures and provide sufficient feedback to allow residents to accurately assess their own performance.
Background: The objective of this study was to determine whether gaze patterns could differentiate expertise during simulated ultrasound-guided Internal Jugular Central Venous Catheterization (US-IJCVC) and if expert gazes were different between simulators of varying functional and structural fidelity. Methods: A 2017 study compared eye gaze patterns of expert surgeons (n=11), senior residents (n=4), and novices (n=7) during CVC needle insertions using the dynamic haptic robotic trainer (DHRT), a system which simulates US-IJCVC. Expert gaze patterns were also compared between a manikin and the DHRT. Results: Expert gaze patterns were consistent between the manikin and DHRT environments (p = 0.401). On the DHRT system, CVC experience significantly impacted the percent of time participants spent gazing at the ultrasound screen (p < 0.0005) and the needle and ultrasound probe (p < 0.0005). Conclusion: Gaze patterns differentiate expertise during ultrasound-guided CVC placement and the fidelity of the simulator does not impact gaze patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.