We tested the hypothesis that ex vivo hepatocyte gene therapy can correct the metabolic disorder in fumarylacetoacetate hydrolase–deficient (Fah−/−) pigs, a large animal model of hereditary tyrosinemia type 1 (HT1). Recipient Fah−/−pigs underwent partial liver resection and hepatocyte isolation by collagenase digestion. Hepatocytes were transduced with one or both of the lentiviral vectors expressing the therapeutic Fah and the reporter sodium-iodide sym-porter (Nis) genes under control of the thyroxine-binding globulin promoter. Pigs received autologous transplants of hepatocytes by portal vein infusion. After transplantation, the protective drug 2-(2-nitro-4-trifluoromethylbenzyol)-1,3 cyclohexanedione (NTBC) was withheld from recipient pigs to provide a selective advantage for expansion of corrected FAH+ cells. Proliferation of transplanted cells, assessed by both immunohistochemistry and noninvasive positron emission tomography imaging of NIS-labeled cells, demonstrated near-complete liver repopulation by gene-corrected cells. Tyrosine and succinylacetone levels improved to within normal range, demonstrating complete correction of tyrosine metabolism. In addition, repopulation of the Fah−/− liver with transplanted cells inhibited the onset of severe fibrosis, a characteristic of nontransplanted Fah−/− pigs. This study demonstrates correction of disease in a pig model of metabolic liver disease by ex vivo gene therapy. To date, ex vivo gene therapy has only been successful in small animal models. We conclude that further exploration of ex vivo hepatocyte genetic correction is warranted for clinical use.
A novel series of benzylideneindanone derivatives were designed, synthesized, and evaluated as multitarget-directed ligands against Alzheimer's disease. The in vitro studies showed that most of the molecules exhibited a significant ability to inhibit self-induced β-amyloid (Aβ(1-42)) aggregation (10.5-80.1%, 20 μM) and MAO-B activity (IC(50) of 7.5-40.5 μM), to act as potential antioxidants (ORAC-FL value of 2.75-9.37), and to function as metal chelators. In particular, compound 41 had the greatest ability to inhibit Aβ(1-42) aggregation (80.1%), and MAO-B (IC(50) = 7.5 μM) was also an excellent antioxidant and metal chelator. Moreover, it is capable of inhibiting Cu(II)-induced Aβ(1-42) aggregation and disassembling the well-structured Aβ fibrils. These results indicated that compound 41 is an excellent multifunctional agent for the treatment of AD.
Sodium/iodide symporter (NIS)-mediated iodide uptake in thyroid follicular cells is the basis of clinical utilization of radioiodines. The cloning of the NIS gene enabled applications of NIS as a reporter gene in both preclinical and translational research. Non-invasive NIS imaging with radioactive iodides and iodide analogs has gained much interest in recent years for evaluation of thyroid cancer and NIS reporter expression. Although radioiodines and [99mTc]pertechnetate ([99mTc]TcO4-) have been utilized in positron emission tomography (PET) and single photon emission computed tomography (SPECT), they may suffer from limitations of availability, undesirable decay properties or imaging sensitivity (SPECT versus PET). Recently, [18F]tetrafluoroborate ([18F]TFB or [18F]BF4-) and other fluorine-18 labeled iodide analogs have emerged as a promising iodide analog for PET imaging. These fluorine-18 labeled probes have practical radiosyntheses and biochemical properties that allow them to closely mimic iodide transport by NIS in thyroid, as well as in other NIS-expressing tissues. Unlike radioiodides, they do not undergo organification in thyroid cells, which results in an advantage of relatively lower uptake in normal thyroid tissue. Initial clinical trials of [18F]TFB have been completed in healthy human subjects and thyroid cancer patients. The excellent imaging properties of [18F]TFB for evaluation of NIS-expressing tissues indicate its bright future in PET NIS imaging. This review focuses on the recent evolution of [18F]TFB and other iodide analogs and their potential value in research and clinical practice.
Abnormalities of zinc homeostasis are indicated in many human diseases. A noninvasive imaging method for monitoring zinc in the body would be useful to understand zinc dynamics in health and disease. To provide a PET imaging agent for zinc, we have investigated production of 63 Zn (half-life, 38.5 min) via the 63 Cu(p,n) 63 Zn reaction using isotopically enriched solutions of 63 Cu-copper nitrate. A solution target was used for rapid isolation of the 63 Zn radioisotope from the parent 63 Cu ions. Initial biologic evaluation was performed by biodistribution and PET imaging in normal mice. Methods: To produce 63 Zn, solutions of 63 Cu-copper nitrate in dilute nitric acid were irradiated by 14-MeV protons in a low-energy cyclotron. An automated module was used to purify 63 Zn from 63 Cu in the target solution. The 63 Cu-63 Zn mixture was trapped on a cation-exchange resin and rinsed with water, and the 63 Zn was eluted using 0.05 N HCl in 90% acetone. The resulting solution was neutralized with NaHCO 3 , and the 63 Zn was then trapped on a carboxymethyl cartridge, washed with water, and eluted with isotonic 4% sodium citrate. Standard quality control tests were performed on the product according to current good manufacturing practice, including radionuclidic identity and purity, and measurement of nonradioactive Zn 12 , Cu 12 , Fe 13 , and Ni 12 by ion-chromatography high-performance liquid chromatography. Biodistribution and PET imaging studies were performed in B6.SJL mice after intravenous administration of 63 Zn-zinc citrate. 63 Cu target material was recycled by eluting the initial resin with 4N HNO 3 . Results: Yields of 1.07 ± 0.22 GBq (uncorrected at 30-36 min after end of bombardment) of 63 Zn-zinc citrate were obtained with a 1.23 M 63 Cu-copper nitrate solution. Radionuclidic purity was greater than 99.9%, with copper content lower than 3 μg/batch. Specific activities were 41.2 ± 18.1 MBq/μg (uncorrected) for the 63 Zn product. PET and biodistribution studies in mice at 60 min showed expected high uptake in the pancreas (standard uptake value, 8.8 ± 3.2), liver (6.0 ± 1.9), upper intestine (4.7 ± 2.1), and kidney (4.2 ± 1.3). Conclusion: A practical and current good manufacturing practice-compliant preparation of radionuclidically pure 63 Zn-zinc citrate has been developed that will enable PET imaging studies in animal and human studies. 63 Zn-zinc citrate showed the expected biodistribution in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.