Stress is a biologically significant factor shown to influence synaptic plasticity and memory functioning in the hippocampus. This study examined the role of the amygdala, a brain structure implicated in coordinating stress behaviors and modulating memory consolidation, in mediating stress effects on hippocampal long-term potentiation (LTP) and memory in rats. Electrolytic lesions of the amygdala effectively blocked the adverse physiological and behavioral effects of restraint and tailshock stress, without impeding the increase in corticosterone secretion to stress. Physiologically, hippocampal slices from stressed animals exhibited impaired LTP relative to slices from unstressed control animals, whereas hippocampal slices from stressed animals with amygdalar lesions exhibited normal LTP. Behaviorally, stressed animals were impaired in retention of a hippocampal-dependent hidden platform version of the Morris water maze task, and this impairment was blocked by amygdalar lesions. In a fixed location-visible platform water maze task that can be acquired by independent hippocampal and nonhippocampal memory systems, stress enhanced the use of nonhippocampal-based memory to acquire the task. These results indicate that an intact amygdala is necessary for the expression of the modulatory effects of stress on hippocampal LTP and memory.
NMDA receptors in the amygdala seem to be critical for fear conditioning in naive rats. Recent spatial-learning studies suggest that previous learning protected animals from the amnesic effect of NMDA antagonists on new learning (of a similar behavioral task). Therefore, the present study examined whether blocking of NMDA receptors in the basolateral nucleus of the amygdala (BLA) prevents new fear learning in previously fearconditioned rats, as measured by freezing behavior. Intra-BLA infusions of the NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (APV) completely blocked fear conditioning to a tone stimulus in animals that had previously been fear-conditioned to a light stimulus. Similar results were obtained with intra-BLA infusions of APV before contextual fear conditioning in rats that had been fear-conditioned to a different context. Additional experiments showed that intra-BLA APV infusions substantially interfere with the expression and extinction of conditioned fear to tone, light, and context stimuli. Together, these results indicate that NMDA receptors in the BLA are crucial for the encoding of new fear memories (i.e., the formation of specific conditioned stimulus-unconditioned stimulus association), the expression of conditioned fear responses, and the extinction of acquired fear.
There is conflicting evidence regarding the issue of whether NMDA receptors in the basolateral amygdalar complex (BLA) are critically involved in the expression of conditioned fear. This matter was addressed by infusing the rat BLA with D,L-2-amino-5-phosphonovaleric acid (APV), a competitive NMDA receptor antagonist. APV infusion into the BLA was reported to block the expression of conditioned fear when measured by freezing but not when measured by fear-potentiated startle response to a loud noise. To examine this issue further, here we used multiple indices of conditioned fear, including analgesia, 22 kHz ultrasonic vocalization (USV), defecation, and freezing. Rats with bilateral BLA cannula implants underwent fear conditioning consisting of 10 tone-footshock pairings. Before context and tone fear-retention tests, animals received intra-BLA infusions with APV (2.5 g/side) or artificial CSF. Both tone and context tests demonstrated that the expression of conditioned freezing, USV, defecation, and analgesia were significantly impaired by intra-amygdalar infusions of APV. In a second set of experiments, intra-BLA infusions of APV markedly impaired the normal expression of postshock fear responses during training, as measured by freezing, USV, and defecation. Immediate postshock fear expression was predictive of subsequent fear retention to the tone and context when the animals were not infused. These results are consistent with the hypothesis that amygdalar NMDA receptors participate in normal synaptic transmission and therefore the overall functioning of the amygdala.
Electrolytic lesions to the amygdala, a limbic structure implicated in stress-related behaviors and memory modulation, have been shown to prevent stress-induced impairments of hippocampal long-term potentiation (LTP) and spatial memory in rats. The present study investigated the role of intrinsic amygdalar neurons in mediating stress effects on the hippocampus by microinfusing the GABA A receptor agonist muscimol into the amygdala and examining stress effects on Schaffer collateral/commissural-CA1 LTP and spatial memory. The critical period of the amygdalar contribution to stress effects on hippocampal functions was determined by applying muscimol either before stress or immediately after stress. Our results indicate that intra-amygdalar muscimol infusions before uncontrollable restrainttailshock stress effectively blocked stress-induced physiological and behavioral effects. Specifically, hippocampal slices prepared from vehicle-infused stressed animals exhibited markedly impaired LTP, whereas slices obtained from muscimol-infused stressed animals demonstrated robust LTP comparable with that of unstressed animals. Correspondingly, vehicle-infused stressed animals displayed impaired spatial memory (on a hidden platform version of the Morris water maze task), whereas muscimol-infused stressed animals revealed unimpaired spatial memory. In contrast to prestress muscimol effects, however, immediate poststress infusions of muscimol into the amygdala failed to interfere with stress impairments of LTP and spatial memory. Together, these results suggest that the amygdalar neuronal activity during stress, but not shortly after stress, is essential for the emergence of stress-induced alterations in hippocampal LTP and memory.
The amygdala central nucleus (CeA) plays an important part in associative learning. Although most research has focused on functions of its descending projections to brainstem areas involved in autonomic and somatomotor responses, the ascending projections of CeA also play critical roles in learning. For example, a CeA-nigrostriatal pathway is important for acquiring orienting responses (ORs) to conditioned stimuli (CSs) that signal food delivery. In this study, the function of this CeA-nigrostriatal pathway in appetitive conditioning of rats was considered in more detail.In experiment 1, we combined anatomical tracing and methods for detecting neuronal activation to examine whether CeA neurons that project to the substantia nigra pars compacta (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.