Soil erosion is an important part of land ecological change and global environmental change. In southern China, the red soil hilly area is a region with serious soil erosion and water and soil loss. In this study, the spatial distribution of soil erosion and its change induced by land use types were obtained with the spatial operation analysis technology of a geographic information system and the revised universal soil loss equation model (RUSLE). The results show that soil erosion is most very lightly eroded in the study area as a whole, and has a wide yet relatively concentrated distribution, namely spatial aggregation distribution. The average soil erosion rate is the highest in Zhenghe County, followed by Wuyishan City, Shunchang County and Changting County, and relatively low in other counties. Further analysis on soil erosion under different land use types shows that erosion is more serious in unused land, orchard, dry land and rural settlements, and less severe in grassland, urban land, woodland and paddy field. This can be explained by the differences in vegetation cover, soil and water conservation measures, and the degree of human disturbance under different land use patterns.
Phosphorus is an essential element for life, an innate constituent of soil organic matter, and a major anthropogenic input to terrestrial ecosystems. This paper employed the sequential extraction method for phosphorus fraction to study the distribution of phosphorus in different region in Wuyishan. Hierarchical cluster and correlation were used for investigating the relationship between the phosphorus form and tea quality-related constituents in Zhengyan Rock Tea (ZYRT), Banyan Rock Tea (BYRT) and Zhou Rock Tea (ZRT). The result showed that the concentration of phosphorus in different regions followed this order: ZYRT>BYRT>ZRT. The relative contribution of phosphorus fraction in different regions show the similar trend: Metal Oxide Bound Phosphorus (NaOH-P)>Calcium Bound Phosphorus (HCl-P)> Reduced Phosphorus (BD-P)>Adsorbed Phosphorus (NH 4 Cl-P). The maximum content of water extract (WE), caffeine (CF), tea polyphenols (TPP) and total amount of amino acids (TAA) in tea leaves is in ZYRT, followed BYRT, and least in the ZRT. The phosphorus forms seem to have no obvious effects on the tea quality in the ZYRT and BYRT area, while TPP and NaOH-P, TPP and HCl-P are significantly positively correlated (r = 0.912, r = 0.956, r = 0.938; p<0.01) in ZRT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.