The purpose of the present study was to examine the effects of long-term Tai Chi practice on postural balance and H-reflex. Sixteen healthy volunteers, eight with three or more years of experience in Tai Chi training (Tai Chi Group-TCG), and eight with no experience in Tai Chi training (Control Group-CG) participated in the study. Postural sways were measured under four experimental conditions: (1) Standing still with eyes open (EO); (2) Standing still with eyes closed (EC); (3) Standing and turning head to left and right with eyes open (EOT); and (4) Standing and turning head to left and right with eyes closed (ECT). Paired reflex depression (PRD) of the soleus muscle was measured under two conditions: supine and standing. Less significant postural sway was observed in the TCG than in the CG under four conditions including EO, EC, EOT, and ECT (p < 0.01). The TCG demonstrated 14.1%, 30.6%, 33.3% and 22.7% less postural sway, respectively. Significant PRD change from a supine to standing position was observed between TCG and CG (p < 0.05). A significant correlation between PRD change (from supine to standing) and years of Tai Chi practice was observed (r = 0.80, p < 0.05). The findings of this study support the positive effects of Tai Chi exercise on balance control under different conditions. Long-term Tai Chi exercisers also demonstrated different reflex modulation from a supine to standing position, and long-term Tai Chi practice may lead to a change of PRD modulation as neuroadaptation.
Background and Objectives: Limited research has evaluated the effects of acute exercise on cognition under different conditions of inspired oxygenation. Thus, the purpose of this study was to examine the effects of high-intensity interval exercise (HIE) under normoxia (inspired fraction of oxygen (FIO2): 0.209) and moderate hypoxia (FIO2: 0.154) on cognitive function. Design: A single-blinded cross-over design was used to observe the main effects of exercise and oxygen level, and interaction effects on cognitive task performance. Methods: Twenty inactive adults (10 males and 10 females, 19–27 years old) performed a cognitive task (i.e., the Go/No-Go task) before and immediately after an acute bout of HIE under normoxic and hypoxic conditions. The HIE comprised 10 repetitions of 6 s high-intensity cycling against 7.5% body weight interspersed with 30 s passive recovery. Heart rate, peripheral oxygen saturation (SpO2) and rating of perceived exertion were monitored. Results: The acute bout of HIE did not affect the reaction time (p = 0.204, η2 = 0.083) but the accuracy rate decreased significantly after HIE under both normoxic and hypoxic conditions (p = 0.001, η2 = 0.467). Moreover, moderate hypoxia had no influence either on reaction time (p = 0.782, η2 = 0.004) or response accuracy (p = 0.972, η2 < 0.001). Conclusions: These results indicate that an acute session of HIE may impair response accuracy immediately post-HIE, without sacrificing reaction time. Meanwhile moderate hypoxia was found to have no adverse effect on cognitive function in inactive young adults, at least in the present study.
BackgroundStellera chamaejasme Linn, an important poisonous plant of the China grassland, is toxic to humans and livestock. The rapid expansion of S. chamaejasme has greatly damaged the grassland ecology and, consequently, seriously endangered the development of animal husbandry. To draft efficient prevention and control measures, it has become more urgent to carry out research on its adaptive and expansion mechanisms in different unfavorable habitats at the genetic level. Quantitative real-time polymerase chain reaction (qRT-PCR) is a widely used technique for studying gene expression at the transcript level; however, qRT-PCR requires reference genes (RGs) as endogenous controls for data normalization and only through appropriate RG selection and qRT-PCR can we guarantee the reliability and robustness of expression studies and RNA-seq data analysis. Unfortunately, little research on the selection of RGs for gene expression data normalization in S. chamaejasme has been reported.MethodIn this study, 10 candidate RGs namely, 18S, 60S, CYP, GAPCP1, GAPDH2, EF1B, MDH, SAND, TUA1, and TUA6, were singled out from the transcriptome database of S. chamaejasme, and their expression stability under three abiotic stresses (drought, cold, and salt) and three hormone treatments (abscisic acid, ABA; gibberellin, GA; ethephon, ETH) were estimated with the programs geNorm, NormFinder, and BestKeeper.ResultOur results showed that GAPCP1 and EF1B were the best combination for the three abiotic stresses, whereas TUA6 and SAND, TUA1 and CYP, GAPDH2 and 60S were the best choices for ABA, GA, and ETH treatment, respectively. Moreover, GAPCP1 and 60S were assessed to be the best combination for all samples, and 18S was the least stable RG for use as an internal control in all of the experimental subsets. The expression patterns of two target genes (P5CS2 and GI) further verified that the RGs that we selected were suitable for gene expression normalization.DiscussionThis work is the first attempt to comprehensively estimate the stability of RGs in S. chamaejasme. Our results provide suitable RGs for high-precision normalization in qRT-PCR analysis, thereby making it more convenient to analyze gene expression under these experimental conditions.
The NAC proteins form one of the largest families of plant-specific transcription factors (TFs) and play essential roles in developmental processes and stress responses. In this study, we characterized a NAC domain transcription factor, OoNAC72 , from a legume Oxytropis ochrocephala . OoNAC72 was proved to be localized in the nuclei in tobacco lower epidermal cells and had transcriptional activation activity in yeast, confirming its transcription activity. OoNAC72 expression could be induced by drought, salinity and exogenous abscisic acid (ABA) in O. ochrocephala seedlings. Furthermore, over-expression of OoNAC72 driven by CaMV35S promoter in Arabidopsis resulted in ABA hypersensitivity and enhanced tolerance to drought and salt stresses during seed germination and post-germinative growth periods. In addition, over-expression of OoNAC72 enhanced the expression of stress-responsive genes such as RD29A , RD29B , RD26 , LEA14 , ANACOR19 , ZAT10 , PP2CA , and NCED3 . These results highlight the important regulatory role of OoNAC72 in multiple abiotic stress tolerance, and may provide an underlying reason for the spread of O. ochrocephala .
Plants in the Oxytropis genus can live with the endophytic fungi Alternaria sect. Undifilum. Swainsonine, the mycotoxin produced by the endophyte render the host plant toxic and this has been detrimental to grazing livestock in both China and U.S.A. Despite previous efforts, many questions remain to be solved, such as the transmission mode and life cycle of host–endophyte symbiont, the biosynthesis pathway of swainsonine, and in particular the ecological role and evolution of such symbiosis. In this review, we compile the literature to synthesize ideas on the diversity of the symbiosis and propagation of the endophyte. We further compare the previous work from both Alternaria sect. Undifilum and other swainsonine producing fungi to orchestrate a more comprehensive biosynthesis pathway of swainsonine. We also connect swainsonine biosynthesis pathway with that of its precursor, lysine, and link this to a potential role in modulating plant stress response. Based on this we hypothesize that this host–endophyte co-evolution originated from the needs for host plant to adapt for stress. Validation of this hypothesis will depend on future research on endophytic symbiosis in Oxytropis and help in better understanding the roles of plant–endophyte symbiosis in non-Poaceae species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.