Despite mounting evidence for SARS-CoV-2 engagement with immune cells, most express little, if any, of the canonical receptor of SARS-CoV-2, ACE2. Here, using a myeloid-cell receptor-focused ectopic expression screen, we identified several C-type lectins (DC-SIGN, L-SIGN, LSECtin, ASGR1, and CLEC10A) and Tweety family member 2 (TTYH2) as glycan-dependent binding partners of the SARS-CoV-2 spike. Except for TTYH2, these molecules primarily interacted with spike via regions outside of the receptor-binding domain. Single-cell RNA-sequencing analysis of pulmonary cells from COVID-19 patients indicated predominant expression of these molecules on myeloid cells. Although these receptors do not support active replication of SARS-CoV-2, their engagement with virus induced robust proinflammatory responses in myeloid cells that correlated with COVID-19 severity. We also generated a bispecific anti-spike nanobody that not only blocked ACE2-mediated infection but also the myeloid receptors-mediated proinflammatory responses. Our findings suggest SARS-CoV-2-myeloid receptor interactions promote immune hyper-activation, which represents potential targets for COVID-19 therapy.
Glioblastoma (GBM) contains self-renewing GBM stem cells (GSC) potentially amenable to immunologic targeting, but chimeric antigen receptor (CAR) T-cell therapy has demonstrated limited clinical responses in GBM. Here, we interrogated molecular determinants of CAR-mediated GBM killing through whole-genome CRISPR screens in both CAR T cells and patient-derived GSCs. Screening of CAR T cells identified dependencies for effector functions, including TLE4 and IKZF2. Targeted knockout of these genes enhanced CAR antitumor efficacy. Bulk and single-cell RNA sequencing of edited CAR T cells revealed transcriptional profiles of superior effector function and inhibited exhaustion responses. Reciprocal screening of GSCs identified genes essential for susceptibility to CAR-mediated killing, including RELA and NPLOC4, the knockout of which altered tumor–immune signaling and increased responsiveness of CAR therapy. Overall, CRISPR screening of CAR T cells and GSCs discovered avenues for enhancing CAR therapeutic efficacy against GBM, with the potential to be extended to other solid tumors. Significance: Reciprocal CRISPR screening identified genes in both CAR T cells and tumor cells regulating the potency of CAR T-cell cytotoxicity, informing molecular targeting strategies to potentiate CAR T-cell antitumor efficacy and elucidate genetic modifications of tumor cells in combination with CAR T cells to advance immuno-oncotherapy. This article is highlighted in the In This Issue feature, p. 995
N6-methyladenosine (m6A) is a common modification on endogenous RNA transcripts in mammalian cells. Technologies to precisely modify the RNA m6A levels at specific transcriptomic loci empower interrogation of biological functions of epitranscriptomic modifications. Here, we developed a bidirectional dCasRx epitranscriptome editing platform composed of a nuclear-localized dCasRx conjugated with either a methyltransferase, METTL3, or a demethylase, ALKBH5, to manipulate methylation events at targeted m6A sites. Leveraging this platform, we specifically and efficiently edited m6A modifications at targeted sites, reflected in gene expression and cell proliferation. We employed the dCasRx epitranscriptomic editor system to elucidate the molecular function of m6A-binding proteins YTHDF paralogs (YTHDF1, YTHDF2 and YTHDF3), revealing that YTHDFs promote m6A-mediated mRNA degradation. Collectively, our dCasRx epitranscriptome perturbation platform permits site-specific m6A editing for delineating of functional roles of individual m6A modifications in the mammalian epitranscriptome.
The plant Dysosma versipellis is known for its antimicrobial and anticancer properties but is a rare and vulnerable perennial herb that is endemic to China. In this study, 224 isolates were isolated from various tissues of D. versipellis, and were classified into 53 different morphotypes according to culture characteristics and were identified by sequence analyses of the internal transcribed spacer (ITS) region of the rRNA gene. Although nine strains were not assignable at the phylum level, 44 belonged to at least 29 genera of 15 orders of Ascomycota (93%), Basidiomycota (6%), and Zygomycota (1%). Subsequent assays revealed antimicrobial activities of 19% of endophytic extracts against at least one pathogenic bacterium or fungus. Antimicrobial activity was also determined using the agar diffusion method and was most prominent in extracts from four isolates. Moreover, high performance liquid chromatography (HPLC) and ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry analyses (UPLC–QTOF MS) showed the presence of podophyllotoxin in two Fusarium strains, with the highest yield of 277 μg/g in Fusarium sp. (WB5121). Taken together, the present data suggest that various endophytic fungi of D. versipellis could be exploited as sources of novel natural antimicrobial or anticancer agents.
A thermomechanical fatigue life prediction model based on the theory of damage mechanics is presented. The damage evolution, corresponding to the material degradation under cyclic thermomechanical loading, is quantified thermodynamic framework. The damage, as an internal state variable, is coupled with unified viscoplastic constitutive model to characterize the response of solder alloys. The damage-coupled viscoplastic model with kinematic and isotropic hardening is implemented in ABAQUS finite element package to simulate the cyclic softening behavior of solder joints. Several computational simulations of uniaxial monotonic tensile and cyclic shear tests are conducted to validate the model with experimental results. The behavior of an actual ball grid array (BGA) package under thermal fatigue loading is also simulated and compared with experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.