A unique example of an ESIPT coupled AIEE process, associated with a single molecule (1), is utilized for generating multiple luminescent colors (blue-green-white-yellow). The J-aggregated state of 1 forms a luminescent gel in THF and this luminescent property is retained even in the solid state.
Adverse influences of mercury on living organisms are well known. Despite efforts from various regulatory agencies, the build-up of Hg2+ concentration in the environment is of serious concern. This necessitates the search for new and efficient reagents for recognition and detection of Hg2+ in environmental samples.
Complexes synthesized from Zn(II), Cu(II), and Cd(II), using a dipicolyl amine derivative (L), showed unique specificity toward pyrophosphate ion (PPi or P4O7(4-)) among all other common anionic analytes, including different biologically significant phosphate ion (PO4(3-), H2PO4(2-)) or phosphate-ion-based nucleotides, such as AMP, ADP, ATP, and CTP. However, the relative affinities of PPi toward these three metal complexes were found to vary and follow the order K(a)(L.Zn-PPi) > are given in units of (a)(L.Cu-PPi) ≥ K(a)(L.Cd-PPi). Luminescence responses of the receptor L were substantial on binding to Zn(2+) and Cd(2+), while relatively a much smaller luminescence response was observed in the presence of Cu(2+). Luminescence responses of L.M-PPi (M is Zn(2+), Cd(2+), and Cu(2+)) were further modified on binding to the PPi ion. This could be utilized for quantitative detection of PPi in physiological condition as well as for developing a real time "turn-on" (for L.Zn and L.Cu) and "turn-off" (for L.Cd) fluorescence assay for evaluating the enzymatic activity of alkaline phosphatase (ALP). Experimental results revealed how the subtle differences in the binding affinities between PPi and M in L.M (M is Zn(2+), Cd(2+), and Cu(2+)), could influence the cleavage of the phosphoester linkage in PPi by ALP. The DFT calculations further revealed that the hydrolytic cleavage of the metal ion coordinated phosphoester bond is kinetically faster than that for free PPi and thus, rationalized the observed difference in the cleavage of the phosphoester bond by an important mammalian enzyme such as ALP in the presence of different metal complexes.
A new 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based probe molecule (L) is synthesized for specific binding to Hg ion in physiological condition with an associated luminescence ON response in the near-IR region of the spectrum. Appropriate functionalization in the 5-position of each of two pyrrole moieties with styryl functionality in a BODIPY core helped us in achieving the extended conjugation and a facile intramolecular charge transfer transition with a narrow energy gap for frontier orbitals. This accounted for a poor emission quantum yield for the probe molecule L. Binding to Hg helped in interrupting the facile intramolecular charge transfer (ICT) process that was initially operational for L. This resulted in a hypsochromic shift of absorption band and a turn-on luminescence response with λ of 650 nm on specific binding to Hg. Observed spectral changes are rationalized based on quantum chemical calculations. Interestingly, this reagent is found to be localized preferentially in the mitochondria of the live human colon cancer (Hct116) cells. Mitochondria is one of the major targets for localization of Hg, which actually decreases the mitochondrial membrane potential and modifies various proteins having sulfudryl functionality(ies) to cause cell apoptosis. Considering these, ability of the present reagent to specifically recognize Hg in the mitochondrial region of the live Hct116 cells has significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.