Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy.
The activity of the kinase Aurora-A (Aur-A) peaks during mitosis and depends on phosphorylation by one or more unknown kinases. Mitotic phosphorylation sites were mapped by mass spec sequencing of recombinant Aur-A protein that had been activated by incubation in extracts of metaphase-arrested Xenopus eggs. Three sites were identified: serine 53 (Ser-53), threonine 295 (Thr-295), and serine 349 (Ser-349), which are equivalent to Ser-51, Thr-288, and Ser-342, respectively, in human Aur-A. To ask how phosphorylation of these residues might affect kinase activity, each was mutated to either alanine or aspartic acid, and the recombinant proteins were then tested for their ability to be activated by M phase extract. Mutation of Thr-295, which resides in the activation loop of the kinase, to either alanine or aspartic acid abolished activity. The S349A mutant had slightly reduced activity, indicating that phosphorylation is not required for activity. The S349D mutation completely blocked activation, suggesting that Ser-349 is important for either the structure or regulation of Aur-A. Finally, like human Aur-A, overexpression of Xenopus Aur-A transformed NIH 3T3 cells and led to tumors in nude mice. These results provide further evidence that Xenopus Aur-A is a functional ortholog of human Aur-A and, along with the recently described crystal structure of human Aur-A, should help in future studies of the mechanisms that regulate Aur-A activity during mitotic progression.
Conservation genetics focuses on the effects of contemporary genetic structuring on long-term survival of a species. It helps wildlife managers protect biodiversity by identifying a series of conservation units, which include species, evolutionarily significant units (ESUs), management units (MUs), action units (AUs), and family nets (FNs). Although mitochondrial DNA (mtDNA) evolves 5-10 times faster than single-copy nuclear DNA (scnDNA), it records few traces of contemporary events. Thus, mtDNA can be used to resolve taxonomic uncertainties and ESUs. Variable number of tandem repeats (VNTRs) evolve 100-1000 times faster than scnDNA and provide a powerful tool for analyzing recent and contemporary events. VNTR analysis techniques include polymerase chain reaction (PCR)-based microsatellite assays and oligonucleotide probing. Size homoplasy problems in PCR-based microsatellite assays can strongly affect the inference of recent population history. The high homozygosity in endangered species is reflected in a relatively low number and level of variability in microsatellite loci. This combined with "allelic dropout" and "misprinting" errors contributes to the generation of highly biased genetic data following analyses of natural populations. Thus, in conservation genetics, microsatellites are of limited use for identifying ESUs, MUs, and AUs. In contrast to PCR-based microsatellite analysis, oligonucleotide probing avoids errors resulting from PCR amplification. It is particularly suitable for inferring recent population history and contemporary gene flow between fragmented subpopulations. Oligonucleotide fingerprinting generates individual-specific DNA banding patterns and thus provides a highly precise tool for monitoring demography of natural populations. Hence, DNA fingerprinting is powerful for distinguishing ESUs, MUs, AUs, and FNs. The use of oligonucleotide fingerprinting and fecal DNA is opening new areas for conservation genetics.
Fertilization in mammalian eggs is characterized by the presence of intracellular calcium ([Ca(2+)]i) oscillations. In mouse eggs, these oscillations cease after a variable period of time and this is accompanied by a decrease in inositol 1,4,5-trisphosphate receptor (IP3R) responsiveness and down-regulation of the IP3R type 1 (IP3R-1). To investigate the signaling pathway responsible for inducing IP3R-1 down-regulation during fertilization, mouse eggs were exposed to or injected with several Ca(2+)-releasing agonists and the amounts of IP3R-1 immunoreactivity evaluated by Western blotting. Exposure to ethanol or ionomycin, which induce a single [Ca(2+)]i rise, failed to signal down-regulation of IP3R-1. However, [Ca(2+)]i oscillations induced by injection of boar sperm fractions (SF), which presumably stimulate production of IP3, or adenophostin A, an IP3R agonist, both induced down-regulation of IP3R-1 of a magnitude similar to or greater than that observed after fertilization. Exposure to thimerosal, an oxidizing agent that modifies the IP3R without stimulating production of IP3, also initiated down-regulation of IP3R-1, although oscillations initiated by SrCl(2) failed to evoke down-regulation of IP3R-1. The degradation of IP3R-1 in mouse eggs appears to be mediated by the proteasome pathway because it was inhibited by preincubation with lactacystin, a very specific proteasome inhibitor. We therefore suggest that persistent stimulation of the phosphoinositide pathway in mouse eggs by the sperm during fertilization or by injection of SF leads to down-regulation of the IP3R-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.