HSP60 is a mitochondrial localized quality control protein responsible for maintaining mitochondrial function. Although HSP60 is considered both a tumor suppressor and promoter in different types of cancer, the role of HSP60 in human pancreatic ductal adenocarcinoma (PDAC) remains unknown. In this study, we demonstrated that HSP60 was aberrantly expressed in human pancreatic cancer tissues and cell lines. Analysis of the Cancer Genome Atlas database revealed that HSP60 expression is positively correlated with pancreatic cancer. Further, knockdown of HSP60 attenuated pancreatic ductal cancer cell proliferation and migration/invasion, whereas ectopic expression of HSP60 increased tumorigenesis. Using an in vivo tumorigenicity assay, we confirmed that HSP60 promoted the growth of pancreatic ductal cancer cells. Functional analyses demonstrated that HSP60 plays a key role in the regulation of mitochondrial function. Mechanistically, both HSP60 knockdown and oxidative phosphorylation (OXPHOS) inhibition by metformin decreased Erk1/2 phosphorylation and induced apoptosis and cell cycle arrest, whereas Erk1/2 reactivation with EGF promoted cell proliferation. Intriguingly, in vitro ATP supplementation partially restored Erk1/2 phosphorylation and promoted proliferation in PDAC cells with HSP60 knockdown and OXPHOS inhibition. These results suggest that mitochondrial ATP is an important sensor of Erk1/2 regulated apoptosis and the cell cycle in PDAC cells. Thus, our findings indicate for the first time that HSP60 may serve as a novel diagnostic target of human pancreatic cancer, and that inhibition of mitochondrial function using drugs such as metformin may be a beneficial therapeutic strategy targeting pancreatic cancer cells with aberrant function of the HSP60/OXPHOS/Erk1/2 phosphorylation axis.
Studies have shown that miR-221 and miR-222 are deregulated in many cancers, including prostate cancer. Nevertheless, the biological role and the underlying mechanisms of miR-221 and miR-222 in the pathogenesis of androgen-independent prostate cancer are still not clear. The proliferation, apoptosis, cell cycle distinction, and migration capacity of prostate cells were determined following transfection of miR-221 or miR-222 inhibitor. The biological impact and regulation of SIRT1 on prostate cancer cells were investigated. MiR-221 and miR-222 were highly expressed in PC-3 cells compared with in LNCap cells. After miR-221 or miR-222 expression was inhibited, the proliferation and migration rates of PC-3 cells decreased and the apoptosis rate increased. Moreover, SIRT1 protein was up-regulated in cells after they were transfected with miR-221 or miR-222 inhibitor. Cells transfected with siSIRT1 showed increased migration and a decreased apoptosis rate, but there was no significant effect on cell proliferation compared with the controls. There was a negative correlation between miR-221 or miR-222 and SIRT1, but no direct target relationship was identified. These data demonstrate that miR-221 and miR-222 are highly expressed in PC-3 cells. Their inhibition leads to reduced cell proliferation and migration and increased apoptosis in prostate cancer cells. These effects are potentially mediated by up-regulation of SIRT1.
Mitochondrial DNA (mtDNA) haplogroups have been associated with the incidence of type 2 diabetes (T2D); however, their underlying role in T2D remains poorly elucidated. Here, we report that mtDNA haplogroup N9a was associated with an increased risk of T2D occurrence in Southern China (odds ratio 1.999 [95% CI 1.229-3.251], = 0.005). By using transmitochondrial technology, we demonstrated that the activity of respiratory chain complexes was lower in the case of mtDNA haplogroup N9a (N9a1 and N9a10a) than in three non-N9a haplogroups (D4j, G3a2, and Y1) and that this could lead to alterations in mitochondrial function and mitochondrial redox status. Transcriptome analysis revealed that OXPHOS function and metabolic regulation differed markedly between N9a and non-N9a cybrids. Furthermore, in N9a cybrids, insulin-stimulated glucose uptake might be inhibited at least partially through enhanced stimulation of ERK1/2 phosphorylation and subsequent TLR4 activation, which was found to be mediated by the elevated redox status in N9a cybrids. Although it remains unclear whether other signaling pathways (e.g., Wnt pathway) contribute to the T2D susceptibility of haplogroup N9a, our data indicate that in the case of mtDNA haplogroup N9a, T2D is affected, at least partially through ERK1/2 overstimulation and subsequent TLR4 activation.
While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells.IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they are under aerobic conditions. Under anaerobic conditions, E. coli cells accumulate excess intracellular copper, which specifically targets iron-sulfur proteins by blocking iron-sulfur cluster biogenesis. Since iron-sulfur proteins are involved in diverse and vital physiological processes, inhibition of ironsulfur cluster biogenesis by copper disrupts multiple cellular functions and ultimately inhibits cell growth. The results from this study illustrate a new interplay between intracellular copper toxicity and iron-sulfur cluster biogenesis in bacterial cells under anaerobic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.