The estimation of the correct number of dimensions is a long-standing problem in psychometrics. Several methods have been proposed, such as parallel analysis (PA), Kaiser-Guttman’s eigenvalue-greater-than-one rule, multiple average partial procedure (MAP), the maximum-likelihood approaches that use fit indexes as BIC and EBIC and the less used and studied approach called very simple structure (VSS). In the present paper a new approach to estimate the number of dimensions will be introduced and compared via simulation to the traditional techniques pointed above. The approach proposed in the current paper is called exploratory graph analysis (EGA), since it is based on the graphical lasso with the regularization parameter specified using EBIC. The number of dimensions is verified using the walktrap, a random walk algorithm used to identify communities in networks. In total, 32,000 data sets were simulated to fit known factor structures, with the data sets varying across different criteria: number of factors (2 and 4), number of items (5 and 10), sample size (100, 500, 1000 and 5000) and correlation between factors (orthogonal, .20, .50 and .70), resulting in 64 different conditions. For each condition, 500 data sets were simulated using lavaan. The result shows that the EGA performs comparable to parallel analysis, EBIC, eBIC and to Kaiser-Guttman rule in a number of situations, especially when the number of factors was two. However, EGA was the only technique able to correctly estimate the number of dimensions in the four-factor structure when the correlation between factors were .7, showing an accuracy of 100% for a sample size of 5,000 observations. Finally, the EGA was used to estimate the number of factors in a real dataset, in order to compare its performance with the other six techniques tested in the simulation study.
Exploratory graph analysis (EGA) is a new technique that was recently proposed within the framework of network psychometrics to estimate the number of factors underlying multivariate data. Unlike other methods, EGA produces a visual guide-network plot-that not only indicates the number of dimensions to retain, but also which items cluster together and their level of association. Although previous studies have found EGA to be superior to traditional methods, they are limited in the conditions considered. These issues are here addressed through an extensive simulation study that incorporates a wide range of plausible structures that may be found in practice, including continuous and dichotomous data, and unidimensional and multidimensional structures. Additionally, two new EGA techniques are presented, one that extends EGA to also deal with unidimensional structures, and the other based on the triangulated maximally filtered graph approach (EGAtmfg). Both EGA techniques are compared with five widely used factor analytic techniques. Overall, EGA and EGAtmfg are found to perform as well as the most accurate traditional method, parallel analysis, and to produce the best large-sample properties of all the methods evaluated. To facilitate the use and application of EGA, we present a straightforward R tutorial on how to apply and interpret EGA, using scores from a well-known psychological instrument: the Marlowe-Crowne Social Desirability Scale.
This article reviews the causal implications of latent variable and psychometric network models for the validation of personality trait questionnaires. These models imply different data generating mechanisms that have important consequences for the validity and validation of questionnaires. From this review, we formalize a framework for assessing the evidence for the validity of questionnaires from the psychometric network perspective. We focus specifically on the structural phase of validation where items are assessed for redundancy, dimensionality, and internal structure. In this discussion, we underline the importance of identifying unique personality components (i.e., an item or set of items that share a unique common cause) and representing the breadth of each trait's domain in personality networks. After, we argue that psychometric network models have measures that are statistically equivalent to factor models, but suggest that their substantive interpretations differ. Finally, we provide a novel measure of structural consistency, which provides complementary information to internal consistency measures. We close with future directions for how external validation can be executed using psychometric network models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.