Developing nano‐ferroelectric materials with excellent piezoelectric performance for piezocatalysts used in water splitting is highly desired but also challenging, especially with respect to reaching large piezo‐potentials that fully align with required redox levels. Herein, heteroepitaxial strain in BaTiO3 nanoparticles with a designed porous structure is successfully induced by engineering their surface reconstruction to dramatically enhance their piezoelectricity. The strain coherence can be maintained throughout the nanoparticle bulk, resulting in a significant increase of the BaTiO3 tetragonality and thus its piezoelectricity. Benefiting from high piezoelectricity, the as‐synthesized blue‐colored BaTiO3 nanoparticles possess a superb overall water‐splitting activity, with H2 production rates of 159 μmol g−1 h−1, which is almost 130 times higher than that of the pristine BaTiO3 nanoparticles. Thus, this work provides a generic approach for designing highly efficient piezoelectric nanomaterials by strain engineering that can be further extended to various other perovskite oxides, including SrTiO3, thereby enhancing their potential for piezoelectric catalysis.
The electrocatalytic water splitting, which is driven by renewable energy input to produce oxygen, has been widely regarded as a promising strategy in the future energy portfolio. The two-dimensional structure...
It is highly desired to develop new antibacterial agents with superior bactericidal efficiency for minimizing the damage to biological cells. We developed a combined antibacterial nanohybrid exhibiting a superb bactericidal effect and excellent biocompatibility by integrating upconversion nanoparticles (UCNPs) with silver nanoclusters (AgNCs). UCNPs and methylene blue (MB) molecules were encapsulated with silica microspheres via microemulsion, with MB as the photosensitizer. Silver ions (Ag + ) were reduced by amino groups on the surface of silica spheres, wherein silver nanoclusters (AgNCs) were formed in situ to produce the nanohybrid, UCNPs@SiO 2 (MB)@AgNCs. UCNPs emit visible light at 655 nm under excitation by near-infrared radiation (NIR, 980 nm). MB absorbs the emission from UCNPs to generate toxic singlet oxygen ( 1 O 2 ), which leads to the apoptosis of bacteria cells. Meanwhile, silver ions released from AgNCs destroy the bacteria membrane structure. Upon NIR irradiation at 980 nm for 10 min, 8.33 μg mL −1 nanohybrid results in a 100% killing rate for both Gram-positive S. aureus (+) and Gram-negative E. coli (−).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.