Background. Metagenomic next-generation sequencing (mNGS) has made a revolution in the mode of pathogen identification. We decided to explore the diagnostic value of blood and bronchoalveolar lavage fluid (BALF) as mNGS samples in pneumonia. Methods. We retrospectively reviewed 467 mNGS results and assessed the diagnostic performance of paired blood and BALF mNGS in 39 patients with pneumonia. Results. For bacteria and fungi, 16 patients had culture-confirmed pathogen diagnosis, while 13 patients were culture-negative. BALF mNGS was more sensitive than blood mNGS (81.3% vs. 25.0%, p=0.003), and the specificity in BALF and blood mNGS was not statistically significant different (76.9% vs. 84.6%, p=0.317). For 10 patients without culture test, treatments were changed in 2 patients. For viruses, Epstein-Barr virus was positive in blood mNGS in 9 patients. Human adenovirus was detected in both BALF and blood mNGS in 3 patients. Conclusion. Our study suggests that BALF mNGS is more sensitive than blood mNGS in detecting bacteria and fungi, but blood also has advantages to identify the pathogens of pneumonia, especially for some viruses.
Sirt3, a member of the mammalian sirtuin family protein that is localized to mitochondria, is a NAD+-dependent deacetylase and plays an important role in the control of metabolic activity. Recently, several studies have shown the potential role of Sirt3 in certain types of tumors such as breast cancer and hepatocellular carcinoma. However, the role of Sirt3 in lung adenocarcinoma has never been studied. In the present study, we found that Sirt3 protein expression was downregulated in human lung adenocarcinoma tissue when compared with that in adjacent normal tissue. Overexpression of Sirt3 using adenovirus significantly inhibited the growth of the A549 lung adenocarcinoma cell line. In this cell line, overexpression of Sirt3 induced apoptosis, which was evidenced by Annexin V + PI assay and cleaved caspase-3 immunoblotting. Furthermore, overexpression of Sirt3 increased the bax/bcl-2 and bad/bcl-x/L ratios, and promoted AIF translocation to the nucleus. Finally, Sirt3 overexpression upregulated p53 and p21 protein levels, and decreased intracellular ROS levels. Collectively, our data suggest that Sirt3 is a tumor suppressor in lung adenocarcinoma development and progression and may be a promising therapeutic target for lung adenocarcinoma.
We report real-time, in situ determination of free copper ion at picomolar levels in seawater using a fluorescence-based fiber optic biosensor. The sensor transducer is a protein molecule, site-specifically labeled with a fluorophore that is attached to the distal end of an optical fiber, which binds free Cu(II) with high affinity and selectivity. The transducer reports the metal's concentration as a change in fluorescence intensity or lifetime, using a frequency domain approach. The transducer's response time is diffusion-limited, with a typical measurement requiring 30 s. The sensor demonstrates a detection limit of 0.1 pM free Cu(II) in a seawater model. Accuracy and precision of the sensor were at least comparable to cathodic ligand exchange/adsorptive cathodic stripping voltammetry. Measurements of tidal flushing of a copper-contaminated inlet are shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.